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Treatment of choice 

According to the World Health Organisation’s estimations, 8.2 million people 
died from cancer in 2012 [1]. For more than 50% of cancer patients a form of 
radiation therapy is indicated [2]. With the increasing arsenal of possible treat-
ment options (e.g. beam shapes, energy ranges, radiation modalities) and large 
patient heterogeneity it is getting ever harder to decide on the best possible 
treatment for an individual patient. Providing evidence of superiority of one 
treatment option over another is generally done by assessment in clinical trials. 
Under the same conditions, two treatment options are evaluated for differences 
in effectiveness and outcome. Most healthcare systems require the highest –level 
I– type of evidence via a randomised controlled trial (RCT) before reimbursing 
a treatment. 

However, for particle therapy, there is still a lack of such evidence as not 
many RCTs have been performed or are not finished yet. Many have debated 
whether performing RCTs is a proper approach for particle therapy using the 
argument of a lack for clinical equipoise as there is a clear benefit regarding the 
physical dose distribution when compared to photon therapy. However, because 
the costs of particle therapy are notably higher, some argue that RCTs should be 
performed first to answer this question [3–13].  

In this case, it is not clear whether one should adopt the new technology, 
risking investment in a suboptimal therapy, or should wait for more evidence, 
risking that patients do not receive on optimal treatment. This choice is particu-
larly difficult with particle therapy, because the choice for adoption comes with 
high costs that cannot be reverted. It was shown for inoperable stage I non-
small cell lung cancer that the preferred option for the Netherlands is to adopt 
the proton therapy and perform trials with that new technology instead of wait-
ing for evidence first [14]. 

As will be shown in the next section, the use of models to predict the out-
come of a treatment is well-developed and common practice in radiotherapy. By 
feeding simulated treatment planning results into these models, it is possible to 
predict the treatment outcome of both photon and particle therapy, without the 
patients undergoing the real treatment. This concept is used to simulate clinical 
trials and therefore referred to as in silico1 trials. 

                                                           
1Per computer simulation, analogous to in vitro or in vivo 
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Part of the work presented here has contributed to a unique situation where 
the Dutch government and health insurance companies have accepted to adopt 
this in silico planning comparison principle and not only approve the treatment 
of standard proton therapy indications, but also the treatment of patients with 
proton therapy for certain less common indications with the obligation to per-
form prospective cohort studies. For four model-based indications (breast, head 
and neck, lung and prostate cancer), it is needed to test upfront whether there is 
an expected dosimetric benefit and whether this leads to a significant reduction 
of complications. Only then the treatment will be reimbursed; this is called the 
model-based approach [15,16]. 

Prediction modelling 

In the treatment of cancer, a balance must be made between controlling the 
tumour growth and possible side effects or complications due to the treatment. 
When performing surgery, this mainly plays a local role, whereas for chemo-
therapy this concerns the whole body. For radiotherapy, the irradiation not only 
kills tumorous cells but normal ones that are within the fields as well. This is, 
however, a typically regional problem that is addressed during careful treatment 
planning. Moreover, a certain amount of cell-kill is accounted for as the human 
body often can restore cells of which the DNA is not beyond repair. And there is 
a clear dose-effect relationship, for acute as well as long-term side effects. 

The use of models to describe the relation between treatment and its out-
come is longstanding practice in radiotherapy. Typically, these are depending 
on given (or estimated) doses from the treatment planning system (TPS), alt-
hough more recently models that use different metrics, such as patient charac-
teristics, genomics and imaging features, as input are getting more common. 

Dose-driven models 

The research on the biologic effects of cell irradiation, known as radiobiology, has 
a long history. Soon after Röntgen’s discovery of X-rays (1895) and radium by 
the Curies (1898) a flourishing era of radiation research and therapy began. Re-
search in the first decades of the 20th century on animals and humans formed the 
basis of radiobiological theories on fractionation and dose-response relations 
that still hold in current times [17,18]. Considering the fact that cell-kill is a sto-
chastic (probabilistic) effect – i.e. an increase in dose will increase the likelihood 
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of kill – models describing the 
curative effect on the tumour and 
the damaging on the normal tissue 
are called Tumour Control Proba-
bility (TCP) and Normal Tissues 
Complication Probability (NTCP) 
models (Figure 1). 
Most known TCP and NTCP 
models are dose-driven, which 
makes them easy to apply in clini-
cal practice with the dose coming 
from the TPS simulations [20]. 
Although some vendors have 
included these models into their 
TPSs or released them as 
standalone products, their use is 
not widespread. One of the reasons that prevented the uptake is that there is 
considerable doubt about the robustness of the models due to the uncertainty of 
the parameter values driving them. When used, it is mostly for the comparison 
of different treatment plans – of the same patient – relatively against each other 
or within the plan optimisation algorithms.  

Another reason is that there are many other known and unknown confound-
ing factors that influence treatment outcome. For instance, for lung cancer it is 
known that the mean lung dose (MLD) or the lung volume that receives 20 Gy 
are strong predictors for radiation-induced side effects such as pneumonitis 
[21–23]. However, it is more important to take patient-specific characteristics 
into account such as lung function, smoking status, tumour stage or volume 
[24]. When considering the dose-response curves schematically depicted in 
Figure 1, these factors shift or alter the relation such that with the same dose a 
different outcome is given. It is the inclusion of these patient-specific factors 
that is needed for personalised or individualised healthcare. 

Bear in mind: physicians have always applied personalised medicine by tak-
ing into account personal factors such as age, family conditions or clinical histo-
ry [25]. However, most of the current guidelines and tools to choose the best 
treatment for a patient are based on clinical trials. Considering the fact that only 
3-5% of cancer patients are enrolled in clinical trials [26–29] and knowing that 
trial inclusion is typically under fairly optimal conditions (limited age, favoura-

 
Figure 1 Sigmoidal curves represent tumour control proba-
bility (TCP) and normal tissue complication probability 
(NTCP) as a function of treatment factors. The probabilities 
could be constructed as a function of heterogeneous varia-
bles (dose-volume metrics, biomarkers, and clinical factors). 
The radiotherapy treatment objective is to maximize the 
therapeutic index for each patient case [19]. 
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ble health status, etc.) chances are high that the patient in front of the doctor is 
not within that trial group and thus will not receive an optimal individual 
treatment. Moving away from the “one model fits all” approach towards pa-
tient-specific treatment outcome prediction requires a different type of model 
generation than by means of regular clinical trials. 

Data-driven models 

With the advances in the discovery and 
application of innovative techniques 
such as genome sequencing, systems 
biology and diagnostic imaging, patients 
are more “transparent” than ever. Ge-
nome sequencing, for instance, discov-
ers the exact sequence of nucleotide 
bases in the human DNA. New mathe-
matical, holistic systems biology tech-
niques offer ways to discover the under-
lying cell-signalling networks, under-
stand how these contribute to diseases 
and indicate ways to cure these. Fur-
thermore, continuous improvements in 
diagnostic imaging devices allow us to 
visualise a patient from a macroscopic level of body size, structure and organ 
functionality towards microscopic levels of cell type and activity through CT, 
MRI, ultrasound (US) and PET with ever increasing resolution [30]. 

The sheer amount and diversity of this multi-modal information as shown in 
Figure 2 illustrates the complexity of the problem to comprehend these mutual 
influences and relations to radiotherapy response. Discovery of these interac-
tions through regular investigation with clinical trials will be too slow, if not 
impossible at all. While they provide data of high quality, trials are targeted to 
prove theories with typically singular endpoints amongst otherwise similar con-
ditions. Investigating a plurality of unknown relations requires other means. 

Knowledge engineering 

With increasing digitisation and availability of medical data through recent 
developments and vast investments in healthcare information technology such 

 
Figure 2 Multilevel imaging: anatomical, functional 
and molecular imaging [48]. 
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as electronic medical records (EMR), an effective method of modelling and rela-
tively new in healthcare is possible by means of data mining and machine learn-
ing techniques. Using historical and daily clinical data, new statistical models 
can be trained to predict treatment outcome such as survival, toxicity and quali-
ty of life [31–35]. 

The field of research, which encompasses data mining, machine learning and 
“Big Data” storage techniques, is also called Knowledge Engineering [36,37]. It 
indicates that the key effort is to craft knowledge from large amounts of data, 
which is very difficult if not impossible to do by human interpretation. By find-
ing patterns in the data through sorting and clustering and subsequently fitting 
of algorithms, it is possible to form models that, for instance, predict the chance 
that a patient will suffer from severe toxicity by a suggested treatment. Examples 
of such models are available online at eortc.be/ tools/gbmcalculator/, re-
search.nki.nl/ibr and predictcancer.org/. 

The creation of models by the extraction, fitting and modelling thus requires 
large amounts of data. Furthermore, because such models need proper valida-
tion, more datasets are needed from independent, preferably external data 
sources [38,39]. Therefore, adequate management of research or trial data as 
standard component in daily clinical routine with integration in the EMR is 
essential [40,41]. 

Data management 

For the prediction of treatment outcome, the power and usability of a model 
depend on the quality of the data that was used during its generation. With re-
spect to modelling through machine learning techniques, it is said that a lack of 
data quality can be compensated by increased data quantity. While often rebut-
ted by the saying “garbage in, garbage out”, there is truth in both statements. One 
false data entry will be statistically insignificant among thousands of others, un-
less it is a scaling factor, for instance. Or when a dataset is incorrectly labelled or 
linked to some score, it may be many but wrong data.  

Data quality 

Typically, historical clinical data is not well defined, although the increased use 
of Electronic Medical Records (EMR) in radiotherapy has structured the way 

http://eortc.org/investigators/prognostic-calculators/
http://research.nki.nl/ibr
http://research.nki.nl/ibr
http://predictcancer.org/
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patient information is stored. Because data are often entered in free-text, they 
are rarely of the same quality as that from prospective randomised clinical trials.  

Improving quality of data capture during treatment to complement trial data 
should be possible by increasing user-friendliness of EMRs [42] and by better 
compliance when entering information. Furthermore, it calls for good data gov-
ernance, which emphasizes the responsibility of an organisation to adopt a thor-
ough Quality Assure (QA) programme that encompasses Quality Control (QC) 
procedures, definitions of ownership and policies for (re-)use in both care as 
well as research. 

When considering the quality of images, routinely performed diagnostic CT 
imaging is well established, especially in radiotherapy, for dose calculations de-
pend on it. Due to international standards and calibration procedures, these 
data can be used consistently for data mining of images, for instance. However, 
although PET and MRI imaging is available for decades, its use in radiotherapy 
is not on par with CT imaging. One effect hereof is that quantitative standardi-
sation is not as well accomplished. Recently, efforts have been made to harmo-
nise calibration and QA procedures of PET and MRI as well [43–46]. 

Data quantity 

Patients characteristics are very heterogeneous in a genetically, physically or 
even environmentally sense. This means that prediction models should be able 
to predict outcome for a large range of variables. In other words, there is a large 
multidimensional search or solution space for which the model should be valid. 
Typically, prediction models are optimised for interpolation within this space, 
not extrapolation. Furthermore, the use of predictions or related treatment 
choices that lie outside the known boundaries is usually not accepted in evi-
dence-based medicine. To fit a wide range of patients, it is therefore essential to 
have access to plentiful, rich datasets. Conversely, with increasing individualisa-
tion of healthcare and increased information resolution, there is the desire to 
search for relevance among smaller differences in treatment response. An in-
creased amount of data is needed to detect and predict these small differences. 
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One specific development that con-
tributes to a wealth of patient data suita-
ble for data mining and machine learning 
is the field known as radiomics, referring 
to the application of genomics and other 
‘omics’ principles in radiotherapy and 
radiology. Using the anatomical and 
functional images as from the top layer in 
Figure 2, a diversity of shape and texture 
features is extracted and classified. Next, 
by applying techniques known from 
high-volume, high-throughput microar-
ray filtering and clustering (Figure 3), the 
features can be analysed and used for 
outcome prediction modelling [47–49]. 

In contrast to biopsy-based molecular 
essays, this non-invasive “fingerprinting” 
technique has the benefit of taking spatial 
and temporal tumour heterogeneity into 
account for modelling treatment outcome. 

Data warehousing 

Whether collected from clinical routine or for clinical trials, it is often difficult 
to get hold of relevant and correct data for machine learning. Trial data are fre-
quently gathered by hand from scattered sources, which is prone to errors and 
time-consuming (Chapter 3). Any paper or film material needs to be digitised 
or is considered too old, although it could still be relevant as radiation effects 
may present themselves late and it would add to a more heterogeneous data 
pool. Research data is typically stored in disparate spreadsheets or databases 
throughout the institution or even stored at some external organisation that is 
leading the trial.  

Patient data in radiotherapy institutions consists of several components and 
is stored in disparate information systems:  

◆ the EMR for demographics and medical data, 
◆ the TPS with CTs, contours, plans and dose calculations, 

 
Figure 3 Unsupervised hierarchical clustering of 
lung tumor image features extracted from CT 
images from 276 non-small cell lung cancer pa-
tients [50]. 
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◆ the record and verify (R&V) system, which verifies planned and given 
doses and 

◆ the picture archiving and communication system (PACS), which initially 
stored medical images only, but nowadays often stores exported data 
from TPSs as well. 

By using data warehouse (DWH) techniques that centrally collect information 
from these different databases, using extraction, transformation and loading 
(ETL) pipelines, pruned data can be offered in one single environment for fur-
ther research (Chapter 3, [50,51]). A core component is the transformation 
where a “view” is created of the data that is appropriate for further use by re-
searchers. For instance, demographics data are filtered and patients that object 
the use of their data for research are excluded. Different views can be created as 
query results or via a user interface to facilitate multiple trials or investigations. 

Another common practice is to transform the patient-centric data into a dis-
ease-centric presentation, as this is more in line with the way research is per-
formed. Care must be taken that when one of the sources changes its data defi-
nition or structure, the DWH is updated through versioning to correctly capture 
the new information. One example is when international standards are updated, 
such as Common Toxicity Criteria (CTC). Instead of changing CTC scores at 
the original locations, it is best to change ETL queries to include transformation 
from one scoring version to the other and offer uniform data to the end-users, 
while ensuring backwards compatibility. 

With the data being readily available in databases, it is now possible to add 
data extraction services that generate new information from existing data. In 
Chapter 3, it is shown that previously uncalculated DVH metrics can be gener-
ated automatically and improve data quality and collection time for trials. Fur-
thermore, it facilitates the initiation of new trials as patients can easily be select-
ed for inclusion. 

Data sharing 

In Chapter 2, the application of Rapid Learning in the realm of radiotherapy is 
described. While originally referring to fast learning methods in the sense of 
teaching by electronic means (e-learning), Rapid Learning here refers to frame-
works of Healthcare Information Technology (IT) systems (such as EMR, 
DWH, etc.) and shared procedures to exchange information among the 
healthcare community in general and cancer care in particular [52–54]. Given 
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the fact that data from institutions are insufficient to feed learning and predic-
tion systems locally, a large effort is needed in crossing institutional and nation-
al borders to share that information among fellow research centres. 

Issues that arise when sharing information among healthcare centres are nu-
merous [55,56]. First of all, there is a lack of willingness to share as research data 
have long been seen as precious and essential for an institution’s status. Indeed, 
the data collection is typically time-consuming and offers a basis for publications 
and therefore has its (political) value. However, the value of such individual col-
lections is diminishing when international data pooling is considered for predic-
tion modelling, for example [57]. It is increasingly accepted that not the data 
itself but the extracted knowledge is of future interest and importance.  

Second, with the frequent reporting of large-scale unauthorised monitoring of 
private information, there are sincere concerns of the public about sharing their 
medical data, which can cause people to ask for exclusion of trials and data-
sharing initiatives. National privacy laws are not always easy to understand or 
implement, with a huge increase in difficulty and needed effort when considering 
international jurisdiction [55]. Whether justified or not, the scepticism for inad-
equate capacity of the governmental coordination of an infrastructure to link 
medical records countrywide, has caused the Dutch senate to cancel the initial 
efforts for a national virtual EMR after 15 years of work. The main concerns were 
related to the (coordination of) ownership of the data and privacy [58].  

Thirdly, from a technical point of view, it is not common practice yet for 
healthcare institutions to have full DWH solutions in place. Daily healthcare 
data is primarily stored due to the legal obligation of keeping a track record for 
15 years. Reuse of that data is typically only after retrieving from archives for 
clinical trials. While using historical data for optimising the organisations pro-
cesses and workflow is common in industry, this is not yet widely incorporated 
into the field of healthcare. This is changing, however. For instance, while pre-
viously PACS vendors where targeting business solutions for storing images 
alone, there is now a growing industrial effort to expand their reach towards any 
available data with infrastructures such as Enterprise Content Management 
(ECM) and Vendor-Neutral Archive (VNA) systems. To properly organise this, 
the Integrating the Healthcare Enterprise (IHE) organisation, whose goal is to 
improve interoperability in healthcare, has introduced a new profile for Cross-
Enterprise Document Workflow (XDW) [59,60]. 
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Common data language 

This leads to an extremely challenging issue concluded with here: a common 
language. Literally, EMR data is most often entered in the national language. To 
exchange such information internationally, the data has to be translated. A typi-
cal situation is that a data manager is translating the information and manually 
entering the data into a central trial database. Large-scale data capture and ex-
change is not an option that way. 

However, it is even more difficult that not always the same meaning is given 
to words or combinations thereof. A combination of computer systems that is 
able to communicate and exchange information for the purpose of machine 
learning is called semantically interoperable if no human intervention is needed 
to translate or give meaning to the data [61–64]. Based on a syntactic layer of 
standards for data format and transfer syntax, such as the Health Level Seven 
(HL7) standard for healthcare, the data’s interpretation is given via metadata 
(data about the data) that links data elements to concepts such as defined in 
SNOMED Clinical Terminology (SNOMED-CT) in a chosen shared ontology 
[65,66]. With such an internationally defined standard, the relation and reason-
ing between concepts is determined, which makes it possible to model 
knowledge in a globally unique way.  

Knowledge-driven healthcare 

Aging and improved diagnostics has increased healthcare costs globally. One of 
the options to gain efficacy and efficiency is by incorporating advanced infor-
mation technology solutions to match the right treatment to the right patient. 
Data warehousing and mining to provide data-driven prediction models and 
semantic interoperability to improve data sharing are some of the solutions as 
discussed above. 

Extracting information and gaining knowledge that can be applied for deci-
sion-making in daily practice is what drives current innovations in healthcare. 
However, it is important to constantly update the information pool and revise 
findings. Although relying on data sharing as a means, it is essential to share the 
gained knowledge itself as well. Figure 4 shows how the concept of knowledge-
driven healthcare can help improve radiotherapy outcome by feeding knowledge 
from previous follow-up data and regular clinical evidence back in a cascade 
setup to support decision-making and new evidence finding. 
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Figure 4 Knowledge-driven healthcare principles using a clinical decision support system in conjunction with 
standard evidence and regulations to choose the optimal treatment. Afterwards, by learning from follow-up 
data, that knowledge is fed back to improve the clinical decision support system and adapt regulations [70]. 

Multicentric in silico trials 

An example of a centralised collaboration network is the Multicentric In Silico 
Trials In Radiotherapy (MISTIR: mistir.info) framework. In Chapter 5, it is 
shown how this facility was set up for the Radiation Oncology COllaborative 
COmparison (ROCOCO) trial, which simulates clinical trials that compare pho-
ton, proton and carbon-ion radiotherapy for lung, head and neck and prostate 
cancer. MISTIR offers the central database with clinical datasets and treatment 
planning protocols that are securely shared among the ROCOCO partners. 
Various QA methods are provided to assure proper data quality after transfer 
and accurate analyses. Currently, multiple ROCOCO trials are undertaken, in-
cluding studies in lung, head and neck, prostate and recently neuro-oncology as 
well (mistir.info/activities). 

Chapter 6 describes how the platform was used for the multicentric in silico 
comparison of the treatment of lung cancer patients with photon and proton 
therapy. The participants downloaded the datasets and performed treatment 
planning according to the provided protocol. The results were uploaded to the 
data centre, where dose-volume metrics from the different plan modalities were 

http://www.mistir.info/
http://www.mistir.info/activities
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extracted and analysed. The results were collaboratively discussed and finally 
published. 

The advantage of the MISTIR setup is that the high-quality datasets and re-
sults are centrally stored and easily available for reuse and analysis in subse-
quent projects. One such a project was ENVISION, which was a collaboration of 
sixteen leading European research centres and industrial partners, coordinated 
by CERN [67]. Under the umbrella of ENLIGHT, the FP72 supported European 
Network for Light Ion Hadron Therapy, the project aimed at improving the 
quality assurance tools for hadron therapy by developing solutions for quantita-
tive imaging, monitoring of delivered dose, adaptive treatment planning 
through measurements and simulation studies, among others. Part of the RO-
COCO data was used for the investigation of photon, proton and carbon-ion 
plan quality due to organ motion [68,69].  

Decision support systems 

With the increase of patient-related information and treatment options, it is 
increasingly difficult for healthcare professionals to choose the best available 
treatment for patients. Knowledge-driven Healthcare (Figure 4) helps to achieve 
this by constantly updating decision-making guidelines based on (in silico) trials 
as well as daily clinical data (Chapter 6, [70]). Furthermore, by using data-
driven models derived through collaborative efforts of shared data and 
knowledge networks, decision support tools can be generated to assist in choos-
ing the right treatment and make the transition of population-based towards 
individualised medicine (Chapter 2, [71]). 

The model-based approach that was introduced previously uses this combi-
nation of in silico planning comparisons and complication prediction models to 
assess the eligibility for proton therapy. In Chapter 7, a proton therapy decision 
support system is presented (PRODECIS: prodecis.nl). This system offers an 
online service that compares extracted dose-volume metrics from photon and 
proton treatment plans. After feeding these metrics into complication predic-
tion algorithms, a distinction is made whether a patient is expected to benefit 
from proton therapy or not. The toxicity and cost-prediction models that were 
used are publicly available from PredictCancer (predictcancer.org). 
  

                                                           
2 Seventh Framework Programmes for Research and Technological Development, European Union 

http://www.prodecis.nl/
http://predictcancer.org/
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Abstract 

Purpose: An overview of the Rapid Learning methodology, its results, and the 
potential impact on radiotherapy. 
Material and results: Rapid Learning methodology is divided into four phases. 
In the data phase, diverse data are collected about past patients, treatments used, 
and outcomes. Innovative information technologies that support semantic in-
teroperability enable distributed learning and data sharing without additional 
burden on health care professionals and without the need for data to leave the 
hospital. In the knowledge phase, prediction models are developed for new data 
and treatment outcomes by applying machine learning methods to data. In the 
application phase, this knowledge is applied in clinical practice via novel deci-
sion support systems or via extensions of existing models such as Tumour Con-
trol Probability models. In the evaluation phase, the predictability of treatment 
outcomes allows the new knowledge to be evaluated by comparing predicted 
and actual outcomes. 
Conclusion: Personalised or tailored cancer therapy ensures not only that pa-
tients receive an optimal treatment, but also that the right resources are being 
used for the right patients. Rapid Learning approaches combined with evidence 
based medicine are expected to improve the predictability of outcome and radi-
otherapy is the ideal field to study the value of Rapid Learning. The next step 
will be to include patient preferences in the decision making. 
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Tailored cancer therapies, in which specific information about patients and 
tumours is taken into account during treatment decisions, are an important step 
forward from current population-based therapy [1]. However, given the devel-
opments outlined below, it is becoming increasingly difficult to identify the best 
treatment for an individual cancer patient: 

◆ Tumours and patients seem to be even less homogeneous than previously 
assumed, meaning the same treatments can have different outcomes in 
patients who have the same type of tumour. For instance, there are at 
least four molecular subtypes of breast cancer, each with very different 
outcomes [2]. Based on gene signatures various subgroups of tumours 
can be identified [3–8]. 

◆ The number of treatment options is increasing. For example, early stage 
prostate cancer can now be treated with conservative treatment, prosta-
tectomy, external radiotherapy, stereotactic radiotherapy, LDR or HDR 
brachytherapy, high-intensity focused ultrasound, hormone therapy, 
combination therapies and so on. A different example is the recent rise of 
targeted therapies that are rapidly growing in numbers. Performing clas-
sic randomised trials to compare all new treatment options with the ‘‘gold 
standard’’ is becoming impossible by the current speed of innovation. 

◆ The evidence for the right choice in an individual patient is inadequate. 
First, ‘evidence-based medicine’ and the ensuing guidelines always lag 
somewhat behind practice, particularly in highly technological, innova-
tive and rapidly evolving fields such as radiotherapy. In addition, translat-
ing the results of clinical trials to the general patient population and envi-
ronment is not straightforward, given the higher quality of care in clinical 
trials and the known selection bias (trials reach no more than 3% of can-
cer patients, in radiotherapy this figure is even lower) [9–11]. Finally, giv-
en the developments mentioned above – more treatment options and less 
homogeneous patient groups – the urgency to scaffold our treatment de-
cisions with robust knowledge and the demand for evidence-based medi-
cine is larger than ever. 

◆ It is becoming more difficult to find the right evidence. Despite – or per-
haps due to – the fact that papers are being published in rapidly increas-
ing numbers (e.g., as a radiation-oncologist specialising in lung cancer, 
has to read around eight articles per day to keep up with the literature 
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[12]), it is difficult to match the characteristics of the individual patient to 
evidence from the literature and to evaluate the quality of that evidence. 

The developments illustrated 
above have given rise to a search 
for an alternative to the elaborate 
consensus and evidence-based 
guideline medicine format when it 
comes to making treatment deci-
sions. The alternative discussed in 
this article is rapid learning [13]. 
Although it is known under vari-
ous names, including Knowledge-
driven Healthcare, Computer 
Assisted Theragnostics and Learn-
ing Intelligence Network, the basic 
idea in all cases is the (re)use of 

historical data from routine clinical practice for decisions concerning new patients 
or to test new hypothesis [14–19] (Fig. 1). This has a number of obvious ad-
vantages, such as the large number of readily available patients and less selection 
bias compared to clinical trials. However, it also has some important disad-
vantages; for example, the quality of the data in clinical practice is much lower than 
in clinical trials [20]. There is a long very successful history of putting genomic data 
public and reusing them [3–8]. 
 
This paper provides an overview of 
the methods used in Rapid Learning, 
the initial results, and an outlook as 
to how the techniques involved may 
influence clinical radiotherapy. 

Methods and results 

Rapid Learning involves four phases 
(Fig. 2) [13] which are continually 
iterated. In the data phase, data on 
past patients are collected, including 

 
Figure 2 Four phases of rapid learning [13] 

 
Figure 1  Current paradigm versus future paradigm 
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their delivered treatments and outcomes. In the knowledge phase, knowledge is 
generated from these data. In the application phase, this knowledge is applied to 
clinical practice. In the final evaluation phase, the outcomes are evaluated, after 
which the first phase starts again. In every phase, external knowledge (e.g., from 
clinical trials) is used to optimise the phase. The sections below describe the 
methods used and examples of typical results for every phase.  

Data 

Rapid Learning requires both a great deal of data and a large diversity of data. 
The amount of data is important (a) to obtain higher quality knowledge (the 
quality of the knowledge correlates with the number of patients on which that 
knowledge is based) and (b) to be able to generate knowledge concerning small-
er, more homogeneous patient groups and/or use more variables in the 
knowledge phase. The diversity of the data (particularly with respect to the 
treatments used, but also in terms of patient characteristics) is important to 
ultimately decide which treatment is best for an individual patient. 

Obtaining enough data of sufficient quality and diversity is the biggest chal-
lenge in Rapid Learning. This is only possible if data are shared across institution-
al and national borders, both academic and community health care systems. Such 
data sharing is hampered by a lack of time; differences in language and culture as 
well as data recording practices; the academic and political value of data; risks to 
reputation; privacy and legal aspects and so on. Nonetheless, one project that has 
made successful use of data sharing is euroCAT (www.eurocat.info), a collabora-
tive project involving radiotherapy institutes in the Netherlands, Germany and 
Belgium. A crucial factor in the success of this project was the use of innovative 
information technologies, which made it possible to learn from each other’s data 
without the data having to leave the institution (a concept known as distributed 
learning). Another important factor was the development of a dataset with se-
mantic interoperability (also known as ‘data with linguistic unity’ or ‘machine-
readable data’), in which local terms are converted into concepts from a well-
defined ontology (e.g., NCI Thesaurus, SNOMED). In such an approach, the on-
tology terms serve as a common interface to the data at each institutional site, 
enabling a common approach to information retrieval and reasoning facilitated 
through a semantic portal to the data. This semantic interoperability approach 
also allows one to add data from clinical trials to further strengthen the data avail-
able to Rapid Learning. 

http://www.eurocat.info/
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The data collected in routine clinical care are often of lower quality com-
pared to data from clinical trials. Data captured in routine care are often incor-
rect, contradictory, missing and biased. Although many problems are mitigated 
by the sheer volume of data, it is important to include data quality improvement 
protocols varying from simple logic (e.g. it is impossible to be 60 kg and have a 
BMI of 32) to more probabilistic approaches (e.g. for a similar patient cohort 
the median value of the maximal standard uptake value from 18-FDG PET 
scans should be similar between two institutes). A positive effect of such initia-
tives is that they give rise to increasing coordination with respect to what data 
need to be collected and how (i.e., disease-specific ‘umbrella’ protocols). The 
end users of the knowledge, the provider and the patient, not only need to gain 
insight into effects of various treatment options, but also in uncertainties, con-
flicting data, and toxicities and other treatment burden. 

It should be noted that getting data in the proposed manner does not mean 
that there is a need to capture more data, which would be an unacceptable addi-
tional burden to often overloaded professionals. Rather, the data that are already 
captured in routine care and in clinical trials are combined and re-used. There 
are various prototypes to do this such as in the euroCAT project where a fully 
automated, daily synchronisation of the clinical databases into a semantically 
interoperable dataset takes place. 

Knowledge 

Machine learning is used to extract knowledge from great amounts of data. In 
machine learning, models/algorithms are developed that best describe the data 
but that can also make predictions for new, unseen data. Models trained on 
retrospective data may be used to predict the outcomes (e.g., survival, quality of 
life, toxicity, etc.) of various treatments on the basis of data from a new patient. 
Obviously, it is crucial that such models are adequately validated [21]; an unval-
idated model is of very limited value. To this end, a validation set should always 
be available, preferably from a different institute than that from which the data 
were used to create the model. Examples of radiotherapy models (on the basis of 
both clinical trials and Rapid Learning) are available for non-small cell lung, 
rectal and head-and-neck cancer on www.predictcancer.org, breast cancer on 
research.nki.nl/ibr and glioblastoma on www.eortc.be/tools/gbmcalculator. 

http://www.predictcancer.org/
http://research.nki.nl/ibr
http://www.eortc.be/tools/gbmcalculator/
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Application 

In this phase, the knowledge generated by Rapid Learning is applied with the 
help of decision support systems (DSS). Typically, these are tools and software 
applications that can be used to apply knowledge-driven healthcare in practice. 
Examples include nomograms (as in Fig. 3) [14,15,22–26] and websites such as 
those named above, for radiotherapy models, which help predict the expected 
treatment outcome of radiotherapy when they are supplied with the parameters 
specifically relevant to the clinical case. 
 

 
Figure 3 Example of a nomogram  [8] 

 
Decision support systems are neither intended nor suited as a replacement for 
the physician as a healthcare professional. They are designed to support the 
physician and the patient in making a more informed decision with respect to a 
particular treatment. The use of computer models to support healthcare profes-
sionals in their efforts is, of course, not new in radiation oncology. Physics-
based computer models, with which doses can be better calculated than by 
hand, as well as radiobiology-based Normal Tissue Complications Probability 
(NTCP) and Tumour Control Probability (TCP) models to correlate the given 
dose with tumour control and toxicity, are commonplace within radiotherapy 
[27,28]. For example, geometrical models based on tumour volume alone have 
shown additional value next to classical TNM classification as well [29]. The 
new models emerging from Rapid Learning are a natural extension of this to 
patient outcomes. However, a key difference is that the Rapid Learning models 
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are more ‘holistic’ and multifactorial than the current physics- or radiobiology-
based models, as they also take patient, tumour and non-radiotherapy factors 
into account [30]. For instance, a Rapid Learning model of radiation-induced 
oesophagitis shows that the risk for this toxicity not only depends on the dose to 
which the oesophagus is exposed, but also greatly increases if chemotherapy is 
given concomitantly [31]. Another example is that the survival of non-
metastatic unresectable non-small cell lung cancer is better predicted by a multi-
factorial model based on clinical and imaging variables, and even more when 
blood biomarkers are included [31,32]. In both cases the models outperform the 
prognostic value of TNM classification. 

Evaluation 

The underlying idea in Rapid Learning is that the application of knowledge ac-
quired from routine data leads to predictability of treatment outcomes, meaning 
that these outcomes can be improved in terms of both effectiveness (achieving 
the desired result) and efficiency (the resources needed to achieve the result). 
Naturally, this needs to be continually evaluated, focusing on the question ‘Is 
the outcome of the treatment as predicted?’ Compared to the consensus- and 
evidence based guideline knowledge that is preferably constructed with (meta-
analysis of) robust experimental data that are interpreted by multiple stakehold-
ers including health care economists and patient representatives, the prediction 
models may suffer from confounders and selection bias. For Rapid Learning, 
having high-quality data with respect to outcomes is crucial. This implies the 
use of broadly accepted taxonomies such as RECIST or pathological Complete 
Response for tumour response [33], CTCAE for toxicity [34] and euroQoL for 
quality of life & utilities (which allow to calculate Quality Adjusted Life Year 
(QALY)) [35,36]. Naturally, keeping thorough records of treatment outcomes is 
important not only for Rapid Learning, but also for initiatives such as the quali-
ty registration system for lung cancer patients initiated by the Dutch Society for 
Radiotherapy and Oncology. 

Discussion 

Tailored cancer treatment is a necessity, to ensure not only that the individual 
patient receives the treatment that best suits his or her wishes, and to avoid un-
der or overtreatment but also to optimise resources, so that the right resources 
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are being used for the right patients in healthcare in a broader sense. However, 
tailored cancer treatment is also a challenge: the great diversity of cancer pa-
tients and treatments implies that it is by no means always clear which choice 
leads to which treatment outcome. Especially in cases where the treatment op-
tions under consideration have no clear clinical advantage in the outcome, a 
shared decision-making process can be employed in order to make the most of 
patient preferences. 

Tailored therapy is also necessary for radiotherapy. The radio-sensitivity of 
tumours and normal tissues is often unknown, certainly not homogeneous with-
in an individual patient, and even less so between patients [37–40]. In addition, 
the range of treatment options and thus the number of decisions that need to be 
made within radiotherapy have risen sharply, largely due to technological inno-
vations such as IMRT, VMAT, IGRT and particle therapy as well as innovative 
combinations with systemic and targeted treatments such as tyrosine inhibitors 
or monoclonal antibodies (e.g., Cetuximab). Opting for a particular radiation 
treatment on the basis of expected outcomes is therefore difficult, and the estab-
lished guidelines and literature provide only limited support in this regard. 

This article has discussed Rapid Learning as a means of support when decid-
ing on a tailored radiation treatment. In essence, Rapid Learning involves reus-
ing local, clinical, routine data to develop knowledge in the form of models that 
can predict treatment outcomes, and then clinically applying and carefully eval-
uating these models by way of Decision Support Systems. The hypothesis is that 
treatment outcomes obtained in the past can be used to predict future results. 

Earlier attempts to introduce so-called ‘expert systems’ had mixed results. The 
proposed Rapid Learning methodology is different from the earlier attempts to 
deploy expert systems in several ways: it makes use of larger quantities of relevant 
data (e.g. the clinical patient population), as steadily more clinical data become 
available electronically in the clinical environment. This also enables validation 
in one’s local practice which is a prerequisite for any expert system to be accept-
ed, similar to commissioning and acceptance of treatment planning systems in 
radiotherapy. In contrast with expert systems, Rapid Learning employs quantita-
tive models in addition to qualitative models. Finally, the de facto current expert 
system from ‘‘literature and guidelines based on clinical trials’’ has limited appli-
cation to personalised medicine. This will drive the demand for more flexible and 
rapidly updated expert systems such as proposed in this review. 

The Rapid Learning approach seems to contradict the principles of evidence-
based medicine, in which treatment decisions are based solely on results obtained 
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from controlled clinical trials. In fact, it does not; both approaches are comple-
mentary (Fig. 4). This is compounded by the fact that Rapid Learning is based on 
results obtained from the less controlled setting of clinical practice. These differ-
ent environments yield different insights. Controlled clinical trials primarily aim 
to identify small improvements in results between two treatments in a patient 
group that is as homogeneous as possible. In contrast, Rapid Learning will reveal 
major differences in treatment outcomes that stem from the heterogeneity of the 
patient group. It will be inferior in detecting minor differences in treatments due 
to the lower quality of the data recorded in clinical practice as compared to the 
same treatment in a clinical trial. In addition, Rapid Learning can be seen as an 
alternative for situations in which there are insufficient evidence to make deci-
sions in line with the principles of evidence-based medicine. This is often the 
case with technological innovations; for instance, when considering the use of 
new techniques (e.g., IMRT, protons) in the field of radiotherapy [41]. 
 

 
Figure 4 Complementary instead of contradictory approaches 

 
Rapid Learning is new and still needs to prove its value as a supplement to tradi-
tional, evidence-based approaches. There are several developments that might 
help Rapid Learning change the way scientific evidence is viewed in medicine: 
(a) Technological advances will be created by larger and higher quality data-
bases that link electronic health records with research databases, as well as the 
advent of the Semantic Web with increased interoperability and distributed 
learning approaches that enable learning from data without the need for data to 
leave the hospital; (b) The development by domain experts of qualitative criteria 
to evaluate evidence coming from large databases and rapid learning approach-
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es; (c) The increased pressure and possible reimbursement from healthcare pay-
ers to use Decision Support Systems, especially for high cost treatments such as 
proton therapy; and (d) The development of ‘‘clinical grade’’ and certified 
commercial decision support systems. 

Radiotherapy seems to be the ideal setting to study the value of Rapid Learn-
ing, given the field’s high degree of computerisation, as well as its long use and 
acceptance of predictive models. Within clinical radiotherapy, models and 
planning systems should become available that make it possible to not only plan 
on the basis of physical dose and Dose Volume Histograms parameters, but also 
to explain the relationship with the expected clinical outcomes in individual 
patients. Translating knowledge to an individual patient is challenging, particu-
larly in so-called preference-sensitive situations where there are trade-offs be-
tween options with more or less equally desirable outcomes, but in which differ-
ent individuals may value differently e.g. in terms of side effects. As access to 
health-related information improves, patients have an increased desire to be in 
charge of their own life and health. Despite investment in efforts to improve the 
skills of clinicians, patients continue to report low levels of involvement [42]. 
There is indeed evidence level 1 from a Cochrane systematic review evaluating 
86 studies involving 20,209 participants included in published randomised con-
trolled trials demonstrating that decision aids increase people’s involvement, 
support informed values-based choices in patient-practitioner communication, 
and improve knowledge and realistic perception of outcomes. We therefore 
believe the next step will be to integrate, whenever possible, Shared Decision 
Making approaches (see for example www.treatmentchoice.info; www.option 
grid.org) to include the patient perspective in the choice of best treatment [26]. 
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Abstract 

Introduction: Collecting trial data in a medical environment is at present mostly 
performed manually and therefore time-consuming, prone to errors and often 
incomplete with the complex data considered. Faster and more accurate meth-
ods are needed to improve the data quality and to shorten data collection times 
where information is often scattered over multiple data sources. The purpose of 
this study is to investigate the possible benefit of modern data warehouse tech-
nology in the radiation oncology field. 
Material and methods: In this study, a Computer Aided Theragnostics (CAT) data 
warehouse combined with automated tools for feature extraction was bench-
marked against the regular manual data-collection processes. Two sets of clinical 
parameters were compiled for non-small cell lung cancer (NSCLC) and rectal 
cancer, using 27 patients per disease. Data collection times and inconsistencies 
were compared between the manual and the automated extraction method. 
Results: The average time per case to collect the NSCLC data manually was 
10.4±2.1 min. and 4.3±1.1 min. when using the automated method (p<0.001). 
For rectal cancer, these times were 13.5±4.1 and 6.8±2.4 min., respectively 
(p<0.001). In 3.2% of the data collected for NSCLC and 5.3% for rectal cancer, 
there was a discrepancy between the manual and automated method.  
Conclusions: Aggregating multiple data sources in a data warehouse combined 
with tools for extraction of relevant parameters is beneficial for data collection 
times and offers the ability to improve data quality. The initial investments in 
digitizing the data are expected to be compensated due to the flexibility of the 
data analysis. Furthermore, successive investigations can easily select trial can-
didates and extract new parameters from the existing databases. 
  



 INTRODUCTION | 43 

 

Introduction 

Collecting data in a medical environment for research purposes is time consum-
ing, prone to errors and often incomplete when complex data, such as dosimetric 
data is concerned [1,2]. Faster and more accurate access to medical information 
is required to improve the data quality, shorten data-collection times and reduce 
cost. Furthermore, conducting trials in multiple centres and data-sharing is re-
quired in numerous research projects to validate trial results, enable the collec-
tion of larger datasets of trial patients with a rare disease or to conduct in silico 
trials [1,3-6]. Although the medical community has undertaken numerous efforts 
to digitize its patient and treatment documentation, data are still predominantly 
collected from paper charts. And when data are collected digitally, they are in 
most cases unstructured and distributed over multiple data sources. 

With the growing number of diagnostic and therapeutic modalities comes an 
increasing demand for clinical trials to provide the evidence base for these new 
options and to provide guidance to healthcare providers. However, with only 
around 3% of the adult cancer patients included in clinical trials this is a very hard 
task [7-9]. The use of healthcare information systems based on multi-parametric 
electronic medical record databases (EMR) and data mining tools will greatly 
enhance clinical research in oncology and more specifically in radiation oncology 
and facilitate trials with easy patient selection and improved data quality. 

Because data is often scattered and unstructured throughout a medical care 
organization, data warehouse technology is suitable to combine data sources, 
validate consistency and share data with other researchers [10-12]. It can inte-
grate various information systems in the healthcare enterprise and offers the 
ability to have specific data structures/views for different investigations, which 
may deviate from the structure of the operational systems. 

Benefits of data warehousing have been described on multiple levels, such as 
time-saving for users, improved quantity and quality of information, informed 
decision-making, improvement of business processes and ultimately support for 
the accomplishment of strategic business objectives [13]. Data warehousing is 
increasingly used in healthcare to provide the tools for decision making and indi-
vidualizing disease management [14,15]. Furthermore, it is essential to facilitate 
the (translational) research that is needed to develop new treatment programs and 
support clinical trials (i.e. with quality assurance programmes) [16-20].  

To this end, we developed a research portal with an industrial partner to in-
tegrate the essential medical data sources and offer automated data extraction 
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tools for research purposes. In this study, we test the performance of this portal 
with data mining tools against the manual collection process for clinical trials. 
Performance is measured in time expenses and data quality to target the hy-
pothesis that these will decrease and improve, respectively, by the use of a data 
warehouse. 

Methods and Materials 

The Computer Aided Theragnostics (CAT) research portal 

Together with Siemens Knowledge Solutions (Malvern, PA, USA) we developed 
a Computer Aided Theragnostics (CAT) research portal. It extracts medical data 
from the connected systems via a synchronization manager (sync manager) and 
stores the data centrally in a data warehouse. The operational, patient-centric 
structure is converted into a disease-centric structure suitable for research. In 
our radiotherapy department, the sync manager extracts data from various 
sources: 1) the electronic medical record (EMR), which is either a structured or 
unstructured database, 2) the RT picture archiving communication system 
(PACS), consisting of diagnostic imaging and treatment DICOM RT data such 
as the treatment plans (RTPLAN), predicted 3D dose matrices (3D-RTDOSE), 
delineations (RTSTRUCT) and digitally reconstructed radiographs used for 
setup verification (RTIMAGE), and 3) the Record and Verify system (R&V) 
containing the actual delivered treatment parameters. 

The CAT research portal currently has four core user functionalities (Figure 
1). The first module is the query builder, which is a tool for the visual creation 
and execution of queries as well as viewing the query results and exporting them 
in XML format. An integrated data-browser (second module) is available where 
individual cases can be reviewed. Thirdly, the system offers an electronic case 
report form (eCRF) module. This enables researchers to use the system for clin-
ical trials. The module is built in such a way that case report forms can be pre-
populated with data extracted from the clinical databases acquired during the 
sync procedure. The fourth module is a private data-store for researchers to 
upload parameters of interest not collected by either eCRFs or clinical systems.  

In addition to the EMR, PACS and R&V systems, our department designed 
custom-made, fully automated workflows in a framework called DIGITrans 
(www.mistir.info/digitrans). DIGITrans offers a user interface and background 
services for data generation, extraction and transportation for both clinical and 

http://www.mistir.info/digitrans
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research purposes. During daily clinical practice, 2D dose-guided radiotherapy 
workflows are present [21], while for research users, workflows are defined to 
extract parameters from for instance dose-volume histograms (DVH) and store 
the results as DICOM-objects in the PACS system. These workflows are DI-
COM-driven and can convert, validate and transfer DICOM objects throughout 
the entire department and can easily be adapted to support new parameters or 
modalities. Parameters of interest are stored in a structured database. Currently, 
DVH parameters such as mean lung dose (MLD), structure volumes and differ-
ent volume and dose parameters are stored in a separate structured database. A 
similar extraction is done from PET scans to derive and store standardized up-
take values (SUV).  

 

 

Figure 1:  Schematic overview of the 
CAT data warehouse / research portal. 
The system synchronizes data from 
clinical data sources and custom ser-
vices. It is also capable of collecting data 
for trials and data collected for other 
research purposes. For data export, 
several modules exist in the system and 
are easily accessible by web-technology 
(i.e. the patient browser, query builder 
and an electronic case report form XML 
export).  
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The current data management process 

The current trial data management process in our institute is largely manual 
and when data is acquired electronically still the case report forms have to be 
filled in manually. Currently, a list of patients and the parameters that need to 
be collected is supplied to the data manager, who will then identify from which 
system or document the data needs to be extracted. Next, the data is collected 
manually from each system or chart. The data is noted in an electronic docu-
ment such as Microsoft Excel, Access or in an electronic case report form 
(eCRF). Data is collected using the Good Clinical Practice (GCP) guidelines as a 
reference [22,23]. 

Collection of some of the parameters mentioned requires domain and appli-
cation specialists. For these parameters, the data managers do not collect data 
(e.g. DVH or SUV parameters, which require recalculation), but the collection is 
done separately by radiation technologists. 

Experimental setup 

Two hypothetical trials with representative sets of parameters were defined for 
non-small cell lung cancer (NSCLC) and rectal cancer (Table 1). Next, a compar-
ison was made between the manual data collection process and the automatic 
data warehouse based method. The datasets were heterogeneous so that data had 
to be collected from the paper charts (manually) or EMR (automatically), the 
R&V system and XiO/TrueD (manually) or the PACS. For the measurements, 
the parameter sets were split into two groups; 1) the “lookup” group (chart/EMR 
and R&V) and 2) the “recalculation” group (XiO/TrueD and PACS).  

The manual recalculation of DVH parameters was conducted with the treat-
ment planning system (TPS) XiO (CMS Software, Elekta, XiO 4.34.02, St. Louis, 
MO), using the plans available on the TPS system. For the manual recalculation 
of SUV values we used the commercially available TrueD software (TrueD VC50, 
Siemens Medical, Erlangen, Germany). The PET images were re-imported and 
volumes of interest (VOIs) were created again to retrieve the SUV data. 

For the automatic recalculated parameters, a query was defined once using 
the CAT research portal and the result was exported in XML format. From this 
query result, the original CT/PET images, structures and dose were sent from 
the PACS to the DIGITrans workflows to automatically extract the DVH and 
SUV data.  
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Table 1: Parameters collected for the NSCLC and rectal cancer groups. The last columns show which data was 
looked up where and from which source the data was recalculated. 

Parameter NSCLC Rectum Source Action 

Manual Automatic 

Gender √ √ Chart EMR 

Lo
ok

ed
 u

p 
 

WHO score √ √ Chart EMR 

TNM staging √ √ Chart EMR 

Chemo therapy √ √ Chart EMR 

Nr. positive lymph nodes √ √ Chart EMR 

Tumour PA √ √ Chart EMR 

pCR  √ Chart EMR 

Survival  √ √ Chart EMR 

Total delivered dose √ √ R&V R&V 

Overall treatment time √ √ R&V R&V 

GTV volume √ √ XiO PACS 

Re
ca

lc
ul

at
ed

  

V5 Lungs1  XiO PACS 

V20 Lungs  XiO PACS 

V40  Bladder XiO PACS 

MLD √2  XiO PACS 

SUV Max  Tumour TrueD PACS 

SUV Mean  Tumour TrueD PACS 

1 V5 and V20 data for the lungs were calculated with both lungs minus the PTV 
2 MLD data for the lungs were calculated with both lungs minus the GTV 

 
Furthermore, data quality was evaluated for all experiments by scoring discrep-
ancies between both the CAT and current manual process. To decide which 
method was correct, each deviation was looked up again in its reference system 
or validated by another observer.  

The primary end-point of the experiment was data collection time. For the 
sample size calculation, we hypothesized a difference of 3 minutes with a stand-
ard deviation of 3 minutes using a paired t-test. We wanted to achieve a power 
of 0.99 and an α=0.01. Based on these assumptions, the sample size was deter-
mined at n=27. The secondary end-point of data quality was evaluated by com-
paring the output from the CAT method against the first human observer. The 
output of the human observer was validated by a second human observer and 
inconsistencies were resolved by a third look-up. The third look-up was not 
taken into account in the data collection time measurements. After these com-
parisons between observers, a GCP compliant collected data-set was acquired 
and this set was also compared against the CAT method.  
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Results 

In Figure 2, the average data collection times for NSCLC (a) and rectum cancer 
(b) are shown for the manual versus the CAT groups. The figure shows the dis-
tinction between the data that was looked up (in the EMR and R&V) versus 
recalculated (from PACS/TPS data). On average, the total collection time for the 
manual method for the individual NSCLC cases was 10.4±2.1 min. while for the 
CAT method this was 4.3±1.1 min. (p<0.001). For rectal cancer, this was 
13.5±4.1 min. for the manual collection and 6.8±2.4 min. for the CAT method 
(p<0.001) (Table 2). 
 

  
Figure 2: Average manual versus CAT collection times (in min.) for the a) NSCLC and b) Rectum cases. The 
parameters that were looked up in the EMR and R&V system are displayed in pink and labelled “Lookup”. In 
blue (labelled “Recalc.”), the parameters are shown that were recalculated. The error bars show the standard 
deviations. For the rectum cases, the collection times for SUV data only show the large variability in the con-
tribution to the recalculated parameters (in green and labelled “SUV”). 
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Table 2: Comparison of the total data collection times (mean±SD in min.) for the manual versus the CAT 
method. 

Tumour type Manual (min) CAT (min) p-value 

NSCLC 10.4±2.1 4.3±1.2 <0.001 

Rectum 13.5±4.1 6.9±2.3 <0.001 

 
The main difference between the manual and automatic collection times for 
both the NSCLC and rectum cases were caused by the lookup parameters. The 
data warehouse offered one central interface where all parameters were present, 
while the manual method required the data managers to gather and analyse the 
paper charts. 

For the NSCLC cases there was a difference between manual and automated 
collection times of the DVH parameters. This was caused by the fact that the V5 
and V20 are not used in daily clinical practice and their DVHs needed to be re-
calculated in the TPS. 

For the rectal cancer cases there was a difference compared to the NSCLC 
cases with respect to the collection time of recalculated parameters. This differ-
ence was mainly caused by the extraction of the SUVmean and SUVmax. In the 
manual method, VOIs needed to be re-drawn for all cases because the used sys-
tem did not support import from structures or back-upped data. As can be seen 
in Figure 2b (SUV data), the standard deviation is very large (±3.0 min). This is 
due to the effect that in some cases the auto-segmentation delineated neigh-
bouring organs such as the bladder and contours needed to be edited manually. 
To determine the data-quality, we compared the SUV parameters with the new-
ly generated structure-set.  

There was no difference found in the extraction of DVH parameters between 
both methods, however, the extraction took significantly longer when compared 
to the NSCLC extraction. This was because in daily clinical practice the bladder 
is normally not delineated and therefore not available for both methods and was 
delineated in the TPS. The time needed for the bladder delineation was taken 
into account for both methods and therefore there is no difference between both 
methods for this extraction.  

Manual data collection was performed according to GCP guidelines. This 
means that data is collected by two observers and then validated. After valida-
tion between observers, we found that in the NSCLC set there was a mismatch 
between manually collected data and automatic in 3.2% of all different parame-
ters collected. The mismatch before validation for NSCLC was 10.3%. Using the 
GCP collection process thus resolved 69% of the initial mismatches. 
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We found a particular bad concordance between observers for the manual 
collection of the overall treatment time in days. This was due to the fact that 
some observers erroneously recalculated the data while others looked it up in the 
R&V system. This interpretation difference explained most of the drop of mis-
matching data after validation. The remaining differences could be explained 
primarily by a mismatch between DVH parameters. We found that in most cases 
the DVH parameters that mismatched before validation were based on a differ-
ent treatment plan than actually used for treatment or were calculated on a 
wrong volume. The V5 and V20 were defined using LungLeft – LungRight – PTV(s) 
volumes while the MLD had to be calculated on LungLeft – LungRight – GTV(s) 
volumes. Before validation, the V5 and V20 were in some cases extracted from the 
DVH of where the MLD is calculated on. After the validation between observers, 
the remaining 3.2% mismatching parameters indicate the true mismatch between 
both methods. We found that in more than 90% of these cases the automatic 
method retrieved the correct data. 

For the rectal cancer set we observed similar results. We observed data dif-
ferences in 8.8% of all data collected. Again, we saw a bad concordance of the 
overall treatment time between the manual and automatic method. The other 
deviations were mainly found in the recalculation of SUV parameters. The cause 
for the deviation could be found in the implementation differences between the 
automated mining tool and the PET analysis software. 

In the PET analysis software, a threshold is calculated by taking into account 
the signal-to-background ratio calculated as Threshold = 
0.7813*(SUVmaxTumour/SUVmeanBackground)-0.299. This threshold is then used to draw 
the contour on the PET and all the voxels with an SUV above the threshold are 
used to calculate the SUVmean. The automated method however uses the export-
ed contour to calculate the mean SUV from all the voxels within the exported 
contour. Due to interpolation and inaccuracy of the contour the SUVmean of the 
automated method was lower than with the analysis software. This problem was 
compensated to search the contours for the background contours, calculate the 
threshold and use the threshold in the same way as the PET analysis tool. This 
explained 31% of the mismatches.  

The remaining data inconsistencies were either human error(s), for example 
in one case we found a different total delivered dose, or were caused by errone-
ous DICOM objects.  
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Discussion 

Our results show that using a data-warehouse shortens data-collection times 
significantly and can be of help to improve data quality because data in the CAT 
data warehouse is captured from all clinical reference systems and validated 
before storage in the warehouse. Especially the use of the in-house developed 
mining tools support easy extraction or recalculation of parameters of interest 
(e.g. V20, V5, SUVmean and SUVmax) and eliminates manual steps. However, as the 
results show with the extraction of the SUV parameters great care must be taken 
when using these kinds of tools in an automated way. It is very important to 
carefully validate and approve them before extensive research use.  

The strength of the CAT data warehouse is that it can combine, validate and 
present data from distributed databases in a uniform way. Furthermore, the 
system is designed to have an external interface to share data among other insti-
tutes. Data is easily accessible for researchers via a web-interface with several 
extra options such as a patient browser and a query builder. Occasionally, expert 
knowledge is necessary to maintain the system, because of interoperability is-
sues due to updates of source systems. 

When looking at the manual data collection process we have found that there 
was a large inter-observer variability. This explains most of the data inconsisten-
cies between the automated and manual collection methods. Strict guidelines 
such as GCP [22,23] are of great importance to ensure data quality. We found 
that the collection by two observers and the monitoring and validation is vital for 
data quality because it resolves conflicts between observers. From previous stud-
ies [24,25] it can be concluded that, by using intelligent free-text search-
ing/mining and machine learning techniques approaches to retrieve the data in a 
data warehouse, data can automatically be validated and true data values can be 
identified. Retrieving this data manually can introduce inconsistencies or missing 
data, which we have seen in some cases in this study. This is confirmed by Pro-
kosch et al. [16] who mention in their second challenge that electronic data cap-
ture for trials provides significant benefits over manual collection. One other 
advantage is the possibility to include real-time patient outcome data, for in-
stance by directly linking to a national registry or including properly capture 
patient-reported outcome [26,27]. 

Using the research portal for trial data collection with eCRFs using extracted 
data from local databases, could possibly be a better start of the data collection 
and even replace the first observer. The electronically captured data could then 



 52 | 3. CLINICAL DATA WAREHOUSING 

immediately be validated by the monitor. By using this approach the data collec-
tion time can be minimized. Although pre-population of data can induce data 
capturing problems as mentioned by Kush et al. [2] this can be solved by the 
requirement that the responsible eCRF reporter verifies all pre-populated data. 
This can be embedded in the user interface workflow. New technologies such as 
developed by Rao et al. [24] can be used to validate data at the synchronization 
process delivering high quality data to the user who only needs to validate the 
data for the clinical trial. 

The CAT research portal is an institute-specific data warehouse that can also 
be used to share data in a privacy-preserving and semantic-interoperable man-
ner using internationally accepted data exchange standards and ontologies such 
as described in an accompanying study [28,29], addressing the growing need for 
standardized data exchange between medical centres [1,3,12]. Richesson et al. 
[30] describe that there are currently overlaps, challenges and gaps in the stand-
ards developed for research and clinical purposes for data retrieval at a local 
scale and data sharing at a global scale. They conclude that data should be 
shared between research and clinics where possible but also that the clinical data 
will have gaps and that the importance of data standards for clinical research is 
underestimated. In one of a series of vision papers by the QUANTEC group, 
Deasy et al. [31] suggest that data-sharing and -pooling can raise the quantity as 
well as the quality of clinical data for data mining purposes. We strongly share 
this believe. 

A data warehouse probably reduces cost for the research organization. As can 
be seen from the results from this study, data collection time can be reduced 
significantly. Although the fact that clinical trials usually run for several years the 
time spent for data collection can be reduced by more than 50%, which should 
translate into a costs reduction of data management. However, to set up and 
maintain systems like this will have financial implications. The initial installation 
is the most expensive part but can be spread over several projects in multiple 
years. The operational cost of a system is dependent on the organizations needs 
and is variable. For example, for typical projects datasets of several hundreds of 
patients are needed [32-35]. It was estimated in one of these studies that approx-
imately 45 hours of data management can be saved, based on a dataset of 400 
patients, which is 6-7 min. per case. This is in concordance with our findings. 

For the manual collection process, we measured the time to collect the actual 
data when the source data was available in the sub-systems (i.e. the treatment 
plan was available in the TPS). However, in retrospective studies this might not 
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be the case and data might have to be restored from back-ups or archives. This 
additional time has not been taken into account in this study because of the fact 
that the retrieval of data differs heavily for various backup-and-restore systems. 
Most often PACS data resides on disks, while the TPS data is archived on tape 
or slow disks. Therefore, including restoration of data would likely increase 
manual recalculation times significantly. 

A further benefit of data warehousing is to be expected when considering re-
search and trials in the field of Radiomics [36], for instance. This involves the 
high-throughput extraction of large amounts of image features from clinical 
images. These quantitative imaging features are increasingly used in treatment 
planning and for monitoring patient outcome [37,38]. Because this is a rapidly 
evolving research area, new features are added frequently. Therefore, a data 
warehouse with easily modified data extraction services is likely to be far more 
beneficial when compared to manual data collection. 

Conclusions 

Information technology solutions such as the CAT data warehouse improve 
clinical research for radiotherapy by reducing the time needed to collect neces-
sary data and by improving the quality of the data collected. 
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Abstract 

Extensive, multifactorial data sharing is a crucial prerequisite for current and 
future (radiotherapy) research. However, the cost, time and effort to achieve this 
are often a roadblock. We present an open- source based data-sharing infra-
structure between two radiotherapy departments, allowing seamless exchange of 
de-identified, automatically translated clinical and biomedical treatment data. 
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Introduction 

Sharing data across institutions is required for multi-institutional radiotherapy 
research [1]. Besides exchanging data for specific research projects, there is a 
recognized need to establish a culture of data pooling both within the radiother-
apy [2] and the broader cancer community [3]. For the transition from popula-
tion based treatment options (where “one size fits all”) towards personalized 
medicine we are increasingly depending on decision support systems that re-
quire large heterogeneous datasets [4–8]. Randomized controlled trials hardly 
offer such data with only 3% of adult cancer patients included in trials [9–11]. 
However, aggregating routinely collected real-time biomedical patient data and 
innovative “rapid-learning” research techniques allow us to use the knowledge 
of the masses for the benefit of the individual [3,12,13]. 

Medical informatics driven research, for instance in the field of predictive 
modelling, requires a large amount of data to provide sufficient statistical power 
to act as acceptable decision supporting tools. Furthermore, another substantial 
amount of data is needed for validation of the models, preferably by external 
datasets. 

This brings up some stringent and challenging demands on the quality as 
well as the quantity of the data. Data of inferior quality do not improve by pool-
ing it with other data. It can actually worsen the value of good datasets. Work by 
the Quality Assurance Review Center (QARC; www.qarc.org) and a review by 
the EORTC show the importance of proper Quality Assurance (QA) pro-
grammes in collaborative efforts and the long history thereof in the field of Ra-
diotherapy [14–16].  
 
Another challenge for data-sharing initiatives in the field of biomedical research 
is that the investigated data are often multifactorial, comprising of laboratory 
data, diagnostic and clinical imaging and treatment outcome data, among oth-
ers. Combining these data securely can be troublesome, even when sharing be-
tween departments within the same institution, let alone when between institu-
tions, especially international ones.  

Furthermore, in many research projects, dedicated data management staff 
are required to translate and copy data into trial-specific case report forms 
and/or dedicated IT staff are needed to de-identify DICOM images or build 
databases that are suitable for machine learning and data mining techniques. 
However, without dedicated staff, the sheer amount of time it takes to collect, 

http://www.qarc.org/
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de-identify and share data often is a roadblock to participation in clinical re-
search. With many research projects not or underfunded, especially in the ini-
tiation phase, one requires existing staff to balance other duties with these re-
search requests. This causes the process of data sharing to take a long time, de-
spite the cooperation and willingness of everyone involved. 

In this technical report, we describe one way to quickly build a low cost, in-
frastructure that makes sharing of data easier between two institutions wishing 
to work together, but having different IT systems. This infrastructure was im-
plemented to share data from the Policlinico Universitario Agostino Gemelli in 
Rome, Italy (Gemelli) to the MAASTRO Clinic in Maastricht, the Netherlands 
(MAASTRO) to facilitate research projects such as the Thunder clinical trial 
(NCT00969657, clinicaltrials.gov) and “knowledge engineering” research using 
data-mining and machine learning techniques to develop predictive models for 
various cancer sites (www.predictcancer.org). 

Material and Methods 

Clinical data sources 

In general, radiotherapy research requires various types of information: 
◆ Clinical data (e.g. demographics, TNM-stage, date of diagnosis, histo-

pathology, etc.) 

◆ Diagnostic imaging data (e.g. diagnostic and follow-up PET, CT and MR 
imaging) 

◆ Radiotherapy treatment planning data (e.g. delineation, planning-CT, 
dose matrix, beam setup, prescribed dose and fractions) 

◆ Radiotherapy treatment delivery data (e.g. cone beam CTs, Orthogonal 
EPID imaging, delivered fractions) 

◆ Non-radiotherapy treatment data (e.g. surgery, chemotherapy) 

◆ Outcome data (e.g. survival, local control, toxicity). 
Typically, in a radiotherapy department, this information is scattered across a 
number of data sources from a variety of vendors, which do not necessarily 
share the same patient identification number. In the case of Gemelli, the data 
sources were as given in Table 1. 
 

http://clinicaltrials.gov/
http://www.predictcancer.org/
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Table 1: Data sources at Gemelli 

Data type Data format Database Department Name, Vendor 

Clinical Outcome  
Non-RT treatment  

Text SQL database Multiple Spider, Opengraph 
(local development) 

Diagnostic imaging  DICOM-CT 
DICOM-MR 
DICOM-PT 

DICOM server Radiology Careview, Kodak 

DICOM-PT Optical Disks Nuclear Medicine PET workstation, 
Philips 

RT treatment planning  
 

DICOM-CT 
DICOM-RTDOSE 
DICOM-RTIMAGE 
DICOM-RTPLAN 
DICOM-RTSTRUCT 

DICOM server 
 

Radiotherapy Aria, Varian 

RT treatment delivery Text 
DICOM-RTRECORD 
DICOM-RTIMAGE 

Sybase Database 
DICOM server 

Radiotherapy Aria, Varian 

Data model 

For the research database (DB), a patient-centric data model was designed that 
would enable queries for both medical data and the existence of imaging data 
(Figure 1). A simple data model was deliberately chosen to allow easy identifica-
tion of core disease characteristics but with most information in the form of lists 
of performed procedures as well as performed imaging study and series. 
 

 
Figure 5: Data model of the research database (ResearchDB). (PK = Primary Key; FK = Foreign Key) 
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De-identification 

A coding scheme was employed in which a secure database is maintained that 
holds the link (Key) between a unique random patient identification code (ID) 
and all directly identifying data (ID’s as used in the clinical data sources, name, 
birth date etc.). This Key is maintained by local hospital personnel and only 
accessible from within the firewall of the hospital. In the research DB, the pa-
tient is only identified by the research ID. Rather than applying an irreversible 
anonymization method to the patient data, we used “coding” or “pseudo-
anonymization” to enable extending the datasets with additional information at 
a later stage, which would otherwise be impossible to do. 

Some data elements were not de-identified as they were considered to be im-
portant for the research while they only carry a small risk of identifying a pa-
tient. The de-identification scheme was reviewed and approved by the local 
ethical authority. The elements that were kept were: exact dates of various pro-
cedures (including treatments), exact dates of diagnosis & death, DICOM UIDs 
and CT and MR imaging of the head.  

Clinical terms and translation 

To convert Italian to English standard terms, SNOMED Clinical Terms [17] 
were used as the dictionary. SNOMED CT is considered as the most compre-
hensive multilingual medical terminology in the world. A separate database was 
maintained in which local terms were mapped to the SNOMED-CT concepts 
and both the preferred term and the concept ID were stored.  

Research hardware & software 

On a research workstation (Windows 7 64-bit, Intel Xeon, 2.53GHz, 4GB RAM) 
the following software was installed: SQL Server 2008 (free Express version, 
Microsoft, Redmond, WA); Clear Canvas Image Server and Workstation (both 
free and open source, Clear Canvas, Toronto, Canada); DCMTK DICOM 
toolkit (free and open source, Offis, Oldenburg, Germany); RSNA Clinical Trial 
Processor (CTP) (free and open source, RSNA, Oakbrook, IL) and Matlab 
Compiler Runtime (MCR) engine (free, Mathworks, Natick, MA). 

Clear Canvas Image Server is a PACS and was installed with a temporary 
partition holding identifiable DICOM headers and a research partition holding 
only de-identified DICOM objects. The Clear Canvas Workstation was used for 
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DICOM import of the Nuclear Medicine department’s optical disks. SQL Server 
2008 was used to host the mentioned databases as well as the database of the 
Clear Canvas Image Server. 

Finally, for data synchronization a variety of SQL scripts was designed and 
run through the command line interface. The MCR engine was used to run com-
piled custom Matlab code in which the DCMTK toolkit was called. The CTP 
package was used to build a de-identification pipeline (DICOM import  de-
identification  DICOM Export) and a file export pipeline (DICOM Import  
File Export to shared directory). CTP allows customizable de-identification set-
tings through a web interface or by directly editing an XML configuration file. 

Synchronization mechanism – Text Data 

The name, birth date, hospital identification number and identification num-
bers for all data sources were inserted using an SQL query into the secure Key 
DB for all patients with lung or rectum cancer that had no entry yet. Upon in-
sertion, the patient received a unique research ID, which is a random, non-
sequential 8-digit number. Note that the Key DB is a permanent database and 
that patients will keep the new ID assigned to them. 

A second SQL query mapped local terms for demographics, disease charac-
teristics, procedures and clinical findings to a SNOMED term using the diction-
ary and inserted this information into the Patient, Disease, Procedure and Clini-
cal Finding tables of the research DB.  

The above two SQL queries were scheduled to run nightly as to minimize in-
terference with the clinical work, although testing did not indicate any effect of 
these queries on the clinical process.  

Synchronization mechanism – DICOM Data 

In compiled Matlab code, a query on the Key DB resulted in a list of patient 
identification numbers for the DICOM servers. Using DCMTK commands, a 
so-called DICOM C-FIND request was then sent to each DICOM server, which 
requested the unique identifiers for all series for a given patient being of the CT, 
PT, MR, RTPLAN, RTSTRUCT, RTDOSE, RTRECORD or RTIMAGE modali-
ty. In Matlab, these DICOM data were compared to the existing data in the re-
search PACS. When the data was not yet available, the Matlab code issued a 
DICOM C-MOVE request to transfer data from the DICOM Server to the pri-
vate temporary partition of the research PACS. 
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In a similar manner, a separate Matlab executable compared DICOM data 
between the temporary and research PACS. For new datasets, a C-MOVE re-
quest was issued to transfer these from the temporary PACS to the CTP de-
identification pipeline, de-identified the data and stored them in the research 
PACS. The data synchronization process is depicted in Figure 2. 
 

 
Figure 6: Overview of data sources, flow and external access. Terms as mentioned in the table below: 
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Data retrieval 

To securely transfer data from the research DB and PACS to a remote location, 
first a VPN connection was established. VPN was chosen, as this is the de-facto 
standard to create a so-called “tunnel” (a secured one-to-one connection via the 
public Internet). An SQL query was then issued to the research DB (and only 
this DB). For the DICOM data, direct retrieval was not possible due to security 
concerns. Instead, a C-MOVE request had to be sent (e.g. using DCMTK com-
mands) to send images from the research PACS to a CTP file-share pipeline. 
This pipeline temporarily stored the requested images in a shared location from 
where the images could be copied. 

Legal and ethical  

A collaboration and data transfer agreement was signed which describes the 
type of data, the permitted use and the protection of the data. This agreement 
was submitted to and approved by the local ethical authority. An example 
agreement can be found online in the supplemental data of this article at 
www.cancerdata.org/10.1016/ j.radonc.2013.11.001. 

Results and Discussion 

In this report, we have described one way to build a data-sharing infrastructure 
quickly and at low cost, which makes sharing of data easier between two institu-
tions wishing to collaborate and exchange data. Starting with contractual ar-
rangements on the use and protection of the data, it is possible to build a data 
infrastructure that uses free or open source products and that can address 
common problems such as data de-identification, the need to share DICOM RT 
objects and the need for a common language/ontology.  

The data-sharing infrastructure was implemented in two months (mid 2010). As 
of July 2012 already, the research DB holds about 1.500 lung, 1.500 rectum, 1.000 
head & neck, 300 cervix and 200 pancreas cancer patients and the research PACS 
holds about 13.500 de-identified DICOM studies using a total of 3 TB storage. 

All new rectum and lung cancer patients are added automatically to the re-
search DB and PACS through the nightly synchronization, with a projected 
yearly increase of 500-600 patients. With a Good Clinical Practice (GCP) com-
pliant [18] data warehouse solution that was previously reported in a unicentric 

https://www.cancerdata.org/10.1016/j.radonc.2013.11.001
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setting, these databases could easily provide high quality dose-volume data, for 
instance [19]. This would significantly reduce the amount of time needed by 
data managers to support existing or new clinical trials, especially in a multicen-
tric setting. 

Unexpected problems were that patients were known by different IDs in the 
various information systems. One reason being that department-specific ven-
dors pose different restrictions (e.g. no leading zero’s, or limit on the number of 
digits) so that the central hospital ID could not be applied. Furthermore, infor-
mation from external hospitals was often identified by the external hospital 
patient ID. When personal identification was achievable, for instance when pa-
tients brought images on DVD from another hospital, the data were combined, 
but linking based on name or birth date alone was not done. The level of detail 
when removing identifiable information or the decision to maintain this is a 
matter of the local ethics committee and should be considered per study cohort. 

The infrastructure has been used to pool two existing datasets from both in-
stitutes [20] and is actively used in the Thunder trial (NCT00969657, Clinical-
Trials.gov) in which multiple PET/CT scans before, during and after concurrent 
chemo-radiation are used to predict the likelihood of a complete pathological 
response in rectum cancer patients [21]. A second NIH funded trial using the 
infrastructure is the “Radiomics” [22] trial (NCT01302626) in which advanced 
analysis of CT and PET images of lung cancer patients are correlated with ge-
netic expression and outcome.  

Another active application of the data-sharing infrastructure is “knowledge 
engineering” research. In this type of research, large datasets are required in com-
bination with machine learning techniques to learn predictive models for out-
come in cancer patients such as we described before [7,23,24]. To prove the accu-
racy of the model and prevent erroneous conclusions due to over-fitting external 
validation against independent datasets is crucial. The reported framework facili-
tated such validation for published predictive models in rectum cancer [5,20].  

Finally, the infrastructure is used for the initiation phase of prospective clini-
cal trials to test hypotheses on historical data or to estimate the number of pa-
tients that might be included in a new trial given a certain patient selection. 
Examples showing the power of the infrastructure are a) outcome and number 
of patients older than 75 treated radically with limited stage small lung cancer, 
b) patients with a PET/CT scan before and during a course of radiotherapy of 
lung cancer or c) occurrences of dry mouth in a cohort of 1000 patients being 
treated with conformal versus intensity-modulated radiotherapy. 

http://clinicaltrials.gov/
http://clinicaltrials.gov/
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Our infrastructure has shown to solve the issue of sharing large amounts of 
medical and imaging data for research purposes. The automatic transfer from 
the clinical data flow to a multicentric research environment facilitates daily 
aggregation of information and offers valuable data for mining and validation. 
The basic infrastructure is easily extended with more tumour sites or additional 
relevant procedures. These extensions require modifications of the nightly syn-
chronization and mapping table, which only take minutes. In a manual data 
sharing method, adding a data element or disease site would require dedicated 
staff going through all (paper) charts again twice according to GCP guidelines. 

The presented method should be seen as an ad-hoc data sharing infrastruc-
ture and an initial step to collaborate with two institutions. Previously, we de-
scribed the MISTIR framework for in silico clinical trials in Radiotherapy, which 
enables multiple institutions to securely exchange research data under a strict 
protocol and QA programme [25]. One example of a QA measure we applied 
for MISTIR as well as for the Thunder trial is to calibrate the standardized up-
take values (SUV) from the PET images to enable reliable SUV-driven segmen-
tation among different institutions [26].  

In a joint initiative from the Center for Translational Molecular Medicine 
(CTMM), the Dutch Cancer Society, the Dutch Heart Foundation, the Nether-
lands Federation of University Medical Centers, the Netherlands Bioinformatics 
Centre, the String of Pearls Initiative (PSI) and the Netherlands eScience Center 
(NLeSC), among others, a medical informatics project called Translational Re-
search IT (TraIT) was started to support the transition of highly promising med-
ical research of twenty-one CTMM projects into clinical care (www.ctmm-
trait.nl). Within the TraIT program, we have launched the national BioMedical 
Imaging Archive (www.bmia.nl) to store and exchange clinical imaging data 
using the open-source grid-based caBIG™ tools offered by the NCI, NIH [27–29]. 
Furthermore, TraIT has set up a national instance of OpenClinica (OpenClinica 
LLC, Waltham, USA) to support electronic data capture for large inter-
institutional trials among most of the university medical centres 
(www.openclinica.nl). Efforts are currently undertaken to offer direct image ac-
cess from the electronic case report forms. 

We hope that prototyping projects such as MISTIR and the one described 
here and extensions such as TraIT and the advanced federated EuroCAT com-
puter network (www.eurocat.info) with participating institutions in Belgium, 
Germany and The Netherlands will contribute to global initiatives that offer 
data-sharing and research capabilities for the entire oncology sector. 

http://www.ctmm-trait.nl/
http://www.ctmm-trait.nl/
http://www.bmia.nl/
http://www.openclinica.nl/
http://www.eurocat.info/
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Abstract 

This report introduces a framework for comparing radiotherapy treatment 
planning in multicentric in silico clinical trials. Quality assurance, data incom-
patibility, transfer and storage issues, and uniform analysis of results are dis-
cussed. The solutions that are given provide a useful guide for the set-up of fu-
ture multicentric planning studies or public repositories of high quality data. 
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Introduction 

In radiation oncology, in silico clinical trials or planning studies are increasingly 
popular for investigating different treatment options without harming the pa-
tient [1-3]. They can be described as modelling studies that, based on virtual 
patient material (imaging), validated procedures (including a priori sample size 
calculation) and models, provide an alternative method of exploring or generat-
ing hypotheses. The modelling results should then be validated in real life with 
prospective clinical trials[4]. 

The concept of treatment planning comparison studies is not new. Starting 
in the early 80s, the National Cancer Institute funded various projects to evalu-
ate and compare different treatment modalities [5,6]. Back then, a lot of tools 
and procedures we now take for granted (e.g. 3D dose evaluation, multi-modal 
image registration, plan optimisation) were missing or insufficiently imple-
mented. This hindered the proceedings of those projects. In the three decades 
that followed a lot of these issues were overcome. Although the comparison of 
radiotherapy treatment options in a multicentric setting is still challenging it is 
much less problematic as in the early days. 

One such multicentric in silico clinical trial that is based on the MISTIR (ac-
ronym for “Multicentric In Silico Trials In Radiotherapy”) framework presented 
here is ROCOCO (Radiation Oncology Collaborative Comparison) [7]. This is 
an emulation of clinical trials in photon, proton and heavier particle radiothera-
py for tumours with high incidence. It comprises the treatment planning (TP) 
comparison of lung, prostate and head and neck tumours for 25 patients in each 
group. Currently, eight international institutes are performing TP for conven-
tional and intensity-modulated photon, passive scattered, scanning or intensity-
modulated proton and carbon ion radiotherapy. MAASTRO CLINIC serves as 
the coordinating Data Centre (DC) as well as being a participant.  

During the course of the project various organisational and technical issues 
arose and were solved, thus maturing the framework into its current state (Fig. 
1). As we believe the set-up is an all-in-one solution that can be used for a wide 
range of in silico clinical trials in radiotherapy, planning studies and/or for pub-
lic repository of anonymised datasets, our intention with this technical note is to 
provide a step-by-step guide for building such a framework. All major action 
blocks will be discussed and critical issues on data-exchange will be explored. 
Information that is kept up-to-date can be found online on the MISTIR website: 
www.mistir.info. 

http://www.mistir.info/
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Figure 1 A diagram illustrating the major actions of a project that is based 
on the currently presented in silico trial framework. After uploading data 
to the DB it is checked for integrity and validity by various QA procedures 
(some items shown). The blocks surrounded by the “Data centre” frame 
are performed centrally to avoid data corruption and minimise uncertainty 
due to the use of different algorithms. 

*DICOM images can originate from multiple institutions. However, before 
allowing other participants to use them the DC performs the initial QA 
procedures. 
**The Dummy Run is a joint action by the DC and participants as part of 
the QA programme. 

Methods 

For an international, multicentric in silico clinical trial that started in January 
2008 a framework was built using five major action blocks (Figure 1). A central-
ly hosted database (DB) was designed to host the protocol, the patient datasets, 
the TP results and the analysis thereof. Secure access to the database was grant-
ed to authorised project participants by means of the FTPS (secured File Trans-
fer Protocol) and HTTPS (secured Hyper Text Transfer Protocol) protocols 

Reporters

Principal 
Investigators

Data centre

Participants

Secure
DB

TP
Initialisation

MTA

Protocol

Collaboration

Reporting

Dummy
Run**

Preparation

Analysis

Institute n

Generate DVH

Derive parameters

Biological modelling

Perform statistics

DICOM datasets*

CT/PET Calibration

Database (DB)

Institute 1

QA
Grid spacing
Orientation, offsets
Contour names
Limited nr. of slices



 METHODS | 75 

 

[8,9]. We used Public Key Infrastructure (PKI) certificates (the gold standard 
security method in data exchange of medical data [10-12]) to verify the user’s 
identity before login was allowed. 

To facilitate data sharing, the participants agreed to use the iternationally ac-
cepted Digital Imaging and Communications in Medicine standards (DICOM) 
[13]. In the event of a participant being unable to comply, the RTOG (Radiation 
Therapy Oncology Group) format [14] was accepted. 

The five action blocks of the framework, as described below, were: initialisa-
tion, preparation, treatment planning, analysis and reporting. 

Initialisation 

Following the template of a real clinical trial, a protocol was set up in which the 
trial hypothesis, the sample size and the methodology was described. The struc-
ture and management of the project was defined by project goals and mile-
stones. With respect to the topic that was studied (the comparison of treatment 
techniques or modalities) the protocol described the study endpoints, differenti-
ating primary and secondary endpoints and how differences were analysed. 
Furthermore, it described the available data and means to access it in a secure 
manner. A Material Transfer Agreement (MTA) was formulated in which the 
participants’ roles, rights and liabilities were described. After signing the MTA, 
the participant was granted access to the central database. Templates of the pro-
tocol and MTA are available online. 

Preparation 

With the prepared protocol, eligible patients were accrued and their datasets 
were gathered. By consecutively including patients that satisfied the protocol, no 
selection bias was introduced. A set of CT images and delineations of targets 
and critical organs in the DICOM RT STRUCT format were de-identified and 
uploaded to the database. Furthermore, fluor-18-fluorodeoxyglucose (FDG) 
PET and MR images were added. For the available 4D CT/PET data, the 3D 
motion vector of the target was determined and included in the dataset [2]. Be-
cause the FDG-PET images were used to automatically delineate high-uptake 
regions with a method validated with pathology [15-17], the standardised up-
take value (SUV) conversion curves of data-supplying institutes were calibrated 
[18]. This guaranteed that the auto-delineation algorithms used in the data-
supplying institutes created equivalent contours. 
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Treatment Planning 

To perform TP, the centres downloaded the datasets from the database. It was 
mandatory for each centre to test if any shifts occurred in the structure sets dur-
ing data import. To validate the import, screen captures in JPG format of repre-
sentative slices were uploaded for verification. The centre then proceeded with 
TP according to the strict criteria as described in the project protocol. The TP 
results were exported by the participants in DICOM RT format and uploaded to 
the DB. 

Analysis 

In order to analyse the results and compare TP modalities, the DC used the CT, 
the delineations and the dose matrices stored in the DB. Visualisation of the TP 
results was done using MATLAB (The MathWorks, Natick, Massachusetts), 
CERR [19] or VODCA [20]. 

For the calculation of dose-volume histograms (DVHs), user-developed 
MATLAB code was used instead of requesting DVH parameters from the par-
ticipants. The centrally performed calculations reduce any uncertainties that can 
arise due to differences in the algorithms of the various treatment planning sys-
tems (TPSs). 

The DVHs were then used to derive relevant dose metrics of the different 
structures such as mean, maximum and minimum dose, conformity indices 
(CI), inhomogeneity coefficient (IC) and tumour control probability and nor-
mal tissue complication probability (TCP and NTCP respectively) where models 
were available. The abovementioned metrics were calculated using the strict 
formulation described in the project protocol. The results were made available 
by entering them into the DB. 

Reporting 

Finally, the validated data in the DB was available for publication by the desig-
nated project members. 
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Quality Assurance 

A large collaborative project such as ROCOCO needs a well-designed data ex-
change set-up. Data supplied to all participants originates from multiple sources 
including CT, PET and MR scanners and from the TPS. TP will be based on the 
data available in the DB and participants will upload their data from their sys-
tems to the DB. Currently, TP has been performed using XiO/Focal (CMS Soft-
ware, Elekta), Pinnacle (Philips), Virtuos/TRiP (in-house: DKFZ Heidelberg / 
GSI Darmstadt) and HIPLAN (in-house: NIRS). With such a variety of pro-
grams involved and due to the fact that the DICOM standard allows vendors to 
incorporate proprietary information, interoperability problems easily arise with 
data import/export [21]. Therefore, it is essential to define a proper Quality 
Assurance (QA) programme. 

At MAASTRO CLINIC, an in-house developed program called DIGITrans is 
used in daily clinical routine that normalises all DICOM (RT) data to prevent 
interoperability issues and guarantees data consistency. This includes matching 
the patient demographics of exported data from the scanners, TPS or record-
and-verifying system to the electronical health record. Furthermore, we “brand” 
the images by invisibly adding referencing DICOM tags to the image data. 

During the set-up of the MISTIR framework many issues were addressed 
(Table 1) for which we reused part of the DIGITrans procedures or developed 
new ones. The MISTIR QA procedures now prevent and correct problems with:  

◆ SUV (PET) calibration 
◆ CT calibration (Hounsfield unit to electron density conversion) 
◆ correct media assignment, if needed (e.g. in Monte Carlo dose calculations)  

◆ DICOM (RT) data connectivity 
◆ de-identification 
◆ 4D data phase consistency 
◆ orientation / transformation errors 

◆ number of slices 
◆ contour names 
◆ contour interpolation 

◆ multiple contours on a single slice 
◆ invalid dose grid sizes 
◆ other protocol violations  
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Table 2 A selection of problems, solutions and remarks on the implementation of the MISTIR QA procedures3. 

Topic Problems occurred during 
dummy-run 

Solution Remarks 

De-identifi-
cation 

The TPS, discards breathing 
phases in 4D datasets, due to 
reduced DICOM references in 
TPS export.  

Write code to directly modify the 
needed tags. 

We use dcmodify from 
DCMTK4. 

The TPS does not handle PET or 
MR export. 

Integrity TPS changes coordinate systems 
during DICOM import/export. 

Check for transformations 
whenever data is entering another 
system. 

We use screenshots to 
visually check for 
translations, rotations, 
inversions etc. 

TPS drops the Frame of 
Reference UID during DICOM 
import/export. 

Encode the Frame of Reference 
UID into the CT image data. 

We use the offset vector to 
restore transformed 
datasets. 

Slice 
thickness 

TPS cannot handle CT images 
and contours with varying slice 
thickness. 

Resample the CT data, re-import 
into TPS and use the interpolation 
function to generated contours on 
new slices. 
Manually correct contours (e.g. in 
case of bifurcations) 

 

TPS cannot handle difference in 
reconstruction thickness and 
slice spacing. 

Make the slice thickness equal to 
the difference between the slice 
locations. 

Radiologically this is not 
the same, however, it can 
be ignored for 
radiotherapy. 

Nr. of slices TPS could not handle >99 CT 
slices. 

Make a subset of the data or 
resample if critical areas would be 
cut off. 

Add ~5cm margin around 
beam edges to account for 
patient scatter. 

Structure 
names 

TPS could not handle structure 
names starting with a number.  

Change the structure name to 
begin with a letter. 

 

Internet 
protocols 

Secured network transfer 
between institutes using FTPS 
not possible as the protocol is 
often blocked by hospital 
firewalls. 

Use an HTTPS as well as an FTPS 
server. 

We use DRUPAL5 and 
FileZilla Server6, 
respectively. We use PKI 
certificates to guarantee 
security. 

File 
management 

An HTTPS server does not 
always allow easy file 
manipulation. 

Add a module for file 
management. 

We use the WebFM 
module7. 

Data 
corruption 

With many files in large 
datasets, upload is prone to 
errors. 

Pack the datasets before upload. We propose checksums to 
verify data (e.g. MD5 or 
SHA1). 

                                                           
3 Refer to MISTIR: http://www.mistir.info for more details 
4 OFFIS Dicom Toolkit: http://dicom.offis.de  
5 DRUPAL: http://drupal.org  
6 FileZilla: http://filezilla-project.org  
7 WebFM: http://drupal.org/project/webfm  

http://www.mistir.info/
http://dicom.offis.de/
http://drupal.org/
http://filezilla-project.org/
http://drupal.org/project/webfm
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To test the set-up of the protocol, DB and QA procedures, first a dummy run is 
performed with a representative sample of the dataset. The participants are 
asked to perform TP according to the protocol and send their results to the DB. 
Upon receiving the datasets, the QA procedures are applied to ensure consisten-
cy and validity of the data. In cases where the TP data does not conform to the 
protocol, the participant is asked to adapt its procedures and redo TP. Then the 
data is checked again for validity. After acceptance, the participant is asked to 
proceed with the entire dataset.  

Results 

The presented MISTIR framework has been successfully used for a multicentric, 
in silico clinical trial that is currently being conducted by the ROCOCO consor-
tium. Twelve institutes are participating and several more have expressed inter-
est in the study.  

To ensure data integrity, a series of QA tests is performed manually on any 
item (including that from the host institute) that is uploaded to the DB before 
releasing it to the project members. The QA procedures are designed to detect 
and correct issues regarding the readability of data, compatibility with DICOM 
(RT) standards and transformations in structure delineations and/or in image 
coordinates. 

The design of the framework has successfully been tested for several different 
sectors of the trial. Implementation of the mentioned procedures has successful-
ly led to TP results for prostate and lung cancer [22,23]. 

Discussion 

We have demonstrated that building a functional data management and analysis 
framework for an international, multicentric in silico clinical trial is feasible. Its 
QA procedures are able to detect data inconsistencies and prevent incorrect data 
analysis. 

In its current state, MISTIR is used for file-based data exchange and manual 
data analysis. To support large multicentric trials with improved data transfer 
and warehousing of the DICOM RT objects and data mining capabilities we are 
working on implementing a DICOM RT compliant DB (PACS). To ensure se-
mantic and technical interoperability, recommendations from standardising 
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initiatives for healthcare and clinical research such as caBIG [24], CDISC [25] 
and IHE [26] are taken into account. 

One application that would strongly benefit from the availability of large val-
idated, multicentric datasets is the modelling of radiotherapy outcome [27,28]. 
For satisfying significance of the predictive models a large number of datasets is 
necessary, while for robustness it is best to validate the models on foreign da-
tasets. We believe that public sharing of these datasets would stimulate this re-
search on a global scale, as it already has done in genomics research where pub-
lic data repositories are common practice [29]. Whether a centralised set-up 
based on the current MISTIR platform is needed or that it should evolve into a 
de-centralised, grid-based solution such as the GridCAD and GridIMAGE initi-
atives for radiology [30,31] remains to be determined. This is considered to be 
beyond the scope of this paper. A very recent series of papers of the QUANTEC 
consortium summarised the currently available dose/volume/outcome data for 
normal tissues [32]. In a vision paper of the same series they concluded that 
storage of high quality datasets in repositories should become a common strate-
gy [33]. We believe the described technology will help to realise this goal. 

Conclusion 

We presented MISTIR: a complete and secure framework for in silico clinical 
trials using the output of treatment planning on prepared datasets. It is success-
fully being used in the in silico clinical treatment planning trial that the ROCO-
CO consortium currently is conducting. By defining strict planning protocols 
and using validated algorithms, the results of the in silico trials can be used as a 
starting point for validating and/or generating hypotheses, without harming any 
patient and at a reasonable cost. These hypotheses need further testing in pro-
spective phase II/III trials. 

The step-by-step description of the different building blocks and procedures 
that are used in MISTIR offer a useful guide for the set-up of future in silico 
trials and/or public repositories. 

Acknowledgments 

The ROCOCO members would like to specially thank Uwe Oelfke and Wolf-
gang Schlegel (Deutsche Krebsforschungszentrum, Germany), Marco Schwarz 



 ACKNOWLEDGMENTS | 81 

 

(Agenzia Provinciale per la Protonterapia, Italy) and Dietmar Georg 
(Medizinische Universität Wien, Austria) for their initial contribution to the 
project. Furthermore, dosimetrists who performed treatment planning are 
gratefully acknowledged.  



 82 | 5. MISTIR: MULTICENTRIC COLLABORATION FRAMEWORK 

References 

[1] van Baardwijk A, Bosmans G, Bentzen SM, et al. Radiation dose prescription for non-small-cell lung 
cancer according to normal tissue dose constraints: an in silico clinical trial. Int J Radiat Oncol Biol Phys 
2008;71:1103-1110. 

[2] Bosmans G, Buijsen J, Dekker A, et al. An "in silico" clinical trial comparing free breathing, slow and 
respiration correlated computed tomography in lung cancer patients. Radiother Oncol 2006;81:73-80. 

[3] Jones B, Dale RG. Further radiobiologic modeling of palliative radiotherapy: use of virtual trials. Int J 
Radiat Oncol Biol Phys 2007;69:221-229. 

[4] Brada M, Pijls-Johannesma M, De Ruysscher D. Current clinical evidence for proton therapy. Cancer J 
2009;15:319-324. 

[5] Goitein M, Lyman J, Maor M. "Report of the Working Groups on the Evaluation of Treatment Planning 
for Particle Beam Radiotherapy". Bethesda, MD: Radiotherapy Development Branch, Research Program 
Division of Cancer Treatment, National Cancer Institute, 1987. 

[6] Evaluation of high energy photon external beam treatment planning: project summary. Photon Treat-
ment Planning Collaborative Working Group. Int J Radiat Oncol Biol Phys 1991;21:3-8. 

[7] Qamhiyeh S, Pijls-Johannesma M, Verhaegen F, et al. ROCOCO: An International, Multicentric In Silico 
Clinical Trial In Lung, Prostate And Head&Neck Cancer: Evaluation Of Feasibility. Third International 
Conference on Translational Research and Pre-Clinical Strategies in Radiation Oncology 2009;Geneva, 
Switzerland. 

[8] Securing FTP with TLS. The Internet Engineering Task Force (IETF), 2005. (Accessed January 21, 2010, 
at www.ietf.org/rfc/rfc4217.txt) 

[9] HTTP Over TLS. The Internet Engineering Task Force (IETF), 2000. (Accessed January 21, 2010, at 
www.ietf.org/rfc/rfc2818.txt) 

[10] Schutze B, Kammerer M, Klos G, Mildenberger P. The Public-Key-Infrastructure of the Radiological 
Society of Germany. Eur J Radiol 2006;57:323-328. 

[11] Pharow P, Blobel B. Public key infrastructures for health. Stud Health Technol Inform 2003;96:111-117. 
[12] Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. The 

Internet Engineering Task Force (IETF), 2008. (Accessed January 21, 2010, at www.ietf.org/rfc/rfc5280.txt) 
[13] American College of Radiology NEMA. ACR-NEMA digital imaging and communications standard: 

ACR-NEMA standards publication no. 300-1988. ACR-NEMA, 1988. 
[14] Baxter BS, Hitchner LE, Jr GQM. AAPM Report No. 10: A Standard Format for Digital Image Exchange. 

American Association of Physicists in Medicine, 1982. 
[15] Stroom J, Blaauwgeers H, van Baardwijk A, et al. Feasibility of pathology-correlated lung imaging for 

accurate target definition of lung tumors. Int J Radiat Oncol Biol Phys 2007;69:267-275. 
[16] van Baardwijk A, Bosmans G, Boersma L, et al. PET-CT-based auto-contouring in non-small-cell lung 

cancer correlates with pathology and reduces interobserver variability in the delineation of the primary 
tumor and involved nodal volumes. Int J Radiat Oncol Biol Phys 2007;68:771-778. 

[17] van Baardwijk A, Bosmans G, van Suylen RJ, et al. Correlation of intra-tumour heterogeneity on 18F-
FDG PET with pathologic features in non-small cell lung cancer: a feasibility study. Radiother Oncol 
2008;87:55-58. 

[18] Ollers M, Bosmans G, van Baardwijk A, et al. The integration of PET-CT scans from different hospitals 
into radiotherapy treatment planning. Radiother Oncol 2008;87:142-146. 

[19] Deasy JO, Blanco AI, Clark VH. CERR: a computational environment for radiotherapy research. Med 
Phys 2003;30:979-985. 

[20] VODCA: View-Oriented, Distributed, Cluster-based Approach. (Accessed Februari 24, 2010, at 
www.vodca.ch) 

[21] Henderson M, Behlen FM, Parisot C, Siegel EL, Channin DS. Integrating the healthcare enterprise: a 
primer. Part 4. The role of existing standards in IHE. Radiographics 2001;21:1597-1603. 

[22] Roelofs E, Engelsman M, Rasch C, et al. Results Of A Multicenter In Silico Trial Comparing Photons 
And Protons For Radiotherapy Of Non-Small Cell Lung Cancer. Radiother Oncol 2009;92;Suppl. 1:S108. 

http://www.ietf.org/rfc/rfc4217.txt
http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.vodca.ch/


 REFERENCES | 83 

 

[23] Meerleer GD, Roelofs E, Engelsman M, et al. To compare treatment planning results for primary radio-
therapy of prostate cancer using proton, 3-dimensional conformal and intensity modulated radiothera-
py. 48th Meeting of the Particle Therapy Co-Operative Group 2009. doi:10.3205/09ptcog051 

[24] Fenstermacher D, Street C, McSherry T, Nayak V, Overby C, Feldman M. The Cancer Biomedical In-
formatics Grid (caBIGTM). Conf Proc IEEE Eng Med Biol Soc 2005;1:743-746. 

[25] Souza T, Kush R, Evans JP. Global clinical data interchange standards are here! Drug Discov Today 
2007;12:174-181. 

[26] Siegel EL, Channin DS. Integrating the Healthcare Enterprise: a primer. Part 1. Introduction. Radiogra-
phics 2001;21:1339-1341. 

[27] Dehing-Oberije C, Yu S, De Ruysscher D, et al. Development and external validation of prognostic 
model for 2-year survival of non-small-cell lung cancer patients treated with chemoradiotherapy. Int J 
Radiat Oncol Biol Phys 2009;74:355-362. 

[28] El Naqa I, Bradley JD, Lindsay PE, Hope AJ, Deasy JO. Predicting radiotherapy outcomes using statisti-
cal learning techniques. Phys Med Biol 2009;54:S9-S30. 

[29] Entrez Genome. (Accessed Februari 24, 2010, at www.ncbi.nlm.nih.gov/sites/entrez?db=Genome) 
[30] Gurcan MN, Pan T, Sharma A, et al. GridIMAGE: a novel use of grid computing to support interactive 

human and computer-assisted detection decision support. J Digit Imaging 2007;20:160-171. 
[31] Pan TC, Gurcan MN, Langella SA, et al. Informatics in radiology: GridCAD: grid-based computer-aided 

detection system. Radiographics 2007;27:889-897. 
[32] Marks LB, Yorke ED, Jackson A, et al. Use of Normal Tissue Complication Probability Models in the 

Clinic. International Journal of Radiation Oncology*Biology*Physics 2010;76:S10-S19. 
[33] Deasy JO, Bentzen SM, Jackson A, et al. Improving Normal Tissue Complication Probability Models: 

The Need to Adopt a "Data-Pooling" Culture. International Journal of Radiation Oncolo-
gy*Biology*Physics 2010;76:S151-S154. 

 

 
  

http://www.ncbi.nlm.nih.gov/sites/entrez?db=Genome


 



85 

Chapter 6 
 

ROCOCO: IN SILICO TRIALS 
 

Results of a multicentric in silico clinical trial (ROCOCO): 
comparing radiotherapy with photons and protons for non-

small cell lung cancer 

Erik Roelofs, Martijn Engelsman, Coen Rasch,  
Lucas Persoon, Sima Qamhiyeh, Dirk de Ruysscher,  

Frank Verhaegen, Madelon Pijls-Johannesma,  
and Philippe Lambin; on behalf of the ROCOCO Consortium 8 

 
 
 

Journal of Thoracic Oncology 
2012 Jan;7(1):165-76 

doi:10.1097/JTO.0b013e31823529fc  

                                                           
8 ROCOCO members: J Habrand, A Mazal (Centre de Protontherapie d'Orsay, FR); A Nahum (Clatterbridge 
Centre for Oncology, UK); G Iancu, M Krämer, M Scholz (Gesellschaft für Schwerionenforschung, DE); J 
Debus, O Jäkel (Heidelberger Ionenstrahl-Therapiezentrum, DE); B Baumert, J. van den Bogaard, A Dekker, 
D De Ruysscher, P Lambin, LC Persoon, M Pijls-Johannesma, E Roelofs, F Verhaegen (MAASTRO clinic, 
NL); M Engelsman (Massachusetts General Hospital and Harvard Medical School, USA); D. Georg (Medical 
University Vienna, AT); M Baba, T Hirohiko, N Kanematsu (National Institute of Radiological Sciences, JA); 
C Rasch, M Verheij, L Zijp (Netherlands Cancer Institute, NL); A Lomax, JM Schippers (Paul Scherrer Institu-
te, CH); M Eble (University Hospital Aachen, DE); F Ammazzalorso, U Jelen (University Hospital Giessen 
and Marburg); M Coghe, G De Meerleer, W De Neve, V Fonteyne, I Madani (University Hospital Ghent, BE); 
J Langendijk, C Schilstra, T van de Water (University Medical Center Groningen, NL) 

http://dx.doi.org/10.1097/JTO.0b013e31823529fc


 86 | 6. ROCOCO: IN SILICO TRIALS 

Abstract 

Introduction: This multicentric in silico trial compares photon and proton ra-
diotherapy for non-small cell lung cancer patients. The hypothesis is that proton 
radiotherapy decreases the dose to and the volume of irradiated normal tissues 
even when escalating to the maximum tolerable dose (MTD) of one or more of 
the organs at risk (OAR). 
Methods: Twenty-five patients, stage IA-IIIB, were prospectively included. On 
4D FDG-PET/CT scans, the gross tumour, clinical and planning target volumes 
and OAR were delineated. Three-dimensional conformal (3DCRT) and intensi-
ty-modulated (IMRT) photon as well as passive scattered conformal proton 
therapy (PSPT) plans were created to give 70 Gy to the tumour in 35 fractions. 
Dose (de-)escalation was performed by rescaling to the MTD. 
Results: Protons resulted in the lowest dose to the OAR, while keeping the dose 
to the target at 70 Gy. The integral dose was higher for 3DCRT (59%) and IMRT 
(43%) than for PSPT. The mean lung dose (MLD) reduced from 18.9 Gy for 
3DCRT and 16.4 Gy for IMRT to 13.5 Gy for PSPT. 
For 10 patients, escalation to 87 Gy was possible for all three modalities. The 
MLD and integral dose were respectively 40% and 65% higher for photons than 
for protons. 
Conclusions: The treatment planning results of the ROCOCO trial show a re-
duction of integral dose and the dose to the OAR when treating with protons 
instead of photons, even with dose-escalation. This shows that PSPT is able to 
give a high tumour dose, while keeping the OAR dose lower than with the pho-
ton modalities. 
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Introduction 

Despite the advances in lung cancer treatment, it remains the number one cause 
of death among cancer patients in Europe and North America. Of these, 80% are 
categorized as non-small cell lung cancers (NSCLC) [1,2]. Different approaches in 
combining surgery, chemotherapy and radiotherapy to increase tumour control 
and to lower complication rates are the subject of intense investigation [3]. 

All over the world, proton and also carbon ion (C-ion) radiotherapy is gain-
ing interest and popularity. In the media, it is sometimes bluntly stated that 
proton therapy yields the best possible treatment for every cancer patient, the 
arguments being solely based on the reduction of the dose administered to the 
healthy tissue due to the physical characteristics of charged particles. Current 
published comparative planning studies demonstrated the advantage in ballistic 
properties of particle therapy over conventional photon radiotherapy. However, 
these results were not sufficiently convincing, since they were often monocen-
tric studies, performed with very limited patient numbers and the treatment 
plans were mostly not performed according to the current clinical guidelines. 

Despite a long history of proton radiotherapy, recent reviews have not shown 
a clear clinical evidence to implement charged-particle therapy on a large scale, 
mainly due to the lack of randomised controlled trials (RCTs) [4-7]. However, it 
was concluded from a comprehensive analysis of the current data that particle 
therapy (PT) was a promising treatment modality for NSCLC [8-10]. Since the 
cost of PT is considerably higher than conventional radiotherapy with photons, 
questions arise about the (cost-) effectiveness of this new technology and the 
need to whether or not perform RCTs [11,12]. 

In response to the debate whether RCTs are needed for charged particle 
treatment [13-19] a multicentric in silico clinical trial named ROCOCO (Radia-
tion Oncology Collaborative Comparison) was initiated in 2007. It emulates a 
real clinical trial comparing photon, proton and C-ion therapy for NSCLC, 
prostate and head & neck cancer using the collaborative MISTIR (Multicentric 
In Silico Trials In Radiotherapy) framework (www.mistir.info). MISTIR uses a 
secured central database with virtual patient material and trial protocols compa-
rable to the ones used in real RCTs. A set of quality assurance procedures is 
available to prevent, capture and solve interoperability issues that may arise 
during data exchange and analysis [20].  

With the use of MISTIR and participation of some of the most experienced in-
stitutes in the field, we are able to safely explore possible clinically acceptable 

http://en.wikipedia.org/wiki/In_silico
http://www.mistir.info/
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treatment options which may pave the way for prospective RCTs with real pa-
tients. To the best of our knowledge, no other study has been performed where 
fourteen international radiotherapy centres jointly perform such an in silico trial9. 

This report summarizes the current results of the dosimetric comparison of 
three-dimensional conformal photon (3DCRT), intensity-modulated photon 
(IMRT) and passive scattered proton (PSPT) radiotherapy of the NSCLC lung 
cohort of the ROCOCO trial. The hypothesis is that particle therapy decreases 
the dose to and the volume of irradiated normal tissue while maintaining an iso-
effective dose to the tumour as well as when escalating dose to the maximum 
tolerable dose. Consequently, the risk of side effects in the surrounding normal 
tissue is expected to decrease. 

Materials and Methods 

Study design 

An in silico clinical trial was performed and data from MAASTRO containing 
4D F18-labelled fluorodeoxyglucose (FDG) PET/CT images were de-identified 
and centrally stored on the secured MISTIR database as reported earlier [20]. 
All volumes were delineated at MAASTRO and planning criteria were described 
in a pre-defined protocol. The participating institutes downloaded the datasets 
and performed treatment planning according to the provided protocol using 
their own clinical treatment planning system (TPS). By using the clinically 
commissioned TPSs, the correctness of the dose calculations was assured. 

Next, the dose matrices in DICOM RT Dose format were uploaded back to 
the database. Then, after being checked for consistency, the dose matrices were 
used to calculate the dose-volume histograms (DVH) to derive the dose metrics 
for the final analysis. All proton beam dose distributions were corrected to 
Gy(RBE) by applying a relative biological effectiveness (RBE) factor of 1.1. The 
Gray unit (Gy) was used for absorbed dose reporting of both modalities.  

Patient inclusion 

Between October 2007 and June 2008, 25 stage I-III NSCLC patients were in-
cluded consecutively. No selection was made regarding histology, stage or loca-

                                                           
9 Refer to the list of ROCOCO consortium members in footnote 8. 
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tion of the tumour, resulting in a heterogeneous group of patients. An overview 
of the patient characteristics is given in Table 1. All patients were assumed to 
have a reasonable lung function (a forced expiratory volume in 1 second [FEV1] 
≥ 50% of predicted value and a diffusing capacity of lungs for carbon monoxide 
[DLCO] not corrected for alveolar volume ≥ 50%), so that a maximum mean lung 
dose (MLD) of 19 Gy could be applied [21]. 

For all patients, the 4D FDG PET/CT was used to determine the clinical stag-
ing of the tumours and individual treatment margins. 

 
Table 1 Patient characteristics of the datasets showing histology, TNM classification, staging, top-top ampli-
tudes of the tumour measured on the 4D PET/CT scan and the derived anisotropic margins for photons. 

Patient Histology  TNM  Stage Amplitude (mm)  CTV to PTV margin (mm)  
CC LR AP  CC LR AP 

1 squamous T3N2M0 IIIA 20 5 10 10 6 8 
2 adeno T2N3M0 IIIB 4 3 9 8 6 8 
3 adeno T2N2M0 IIA 8 3 5 8 6 7 
4 squamous T4N0M0 IIIB 3 2 2 7 6 7 
5 squamous T2N1M0 IIB 8 4 6 8 6 7 
6 large cell T4N2M0 IIIB 5 2 3 8 6 7 
7 squamous T4N0M0 IIIB 14 3 4 9 6 7 
8 large cell T1N2M0 IIIA 17 10 20 10 7 10 
9 large cell T4N3M0 IIIB 17 3 5 10 6 7 
10 large cell T2N2M0 IIIA 8 2 2 8 6 7 
11 large cell T2N3M0 IIIB 13 2 1.5 9 6 7 
12 large cell T1N3M0 IIIB 4.5 3 3 8 6 7 
13 large cell T1N2M0 IIIA 7 2 2 8 6 7 
14 adeno T2N2M0  IB 3 2 2 7 6 7 
15 squamous T2N0M0 IIIA 11 3 4 9 6 7 
16 adeno T4N2M0 IIIB 6 3.5 3 8 6 7 
17 large cell T2N3M0 IIIB 6 2 2 8 6 7 
18 squamous T1N0M0 IA 4 5 6 8 6 7 
19 squamous T2M0N0 IB 1 1 1 7 6 7 
20 large cell T2N0M0 IB 5 2 2 8 6 7 
21 large cell T1N2M0 IIIA 10 7 3 8 6 7 
22 NSCLC NOS T4N3M0  IIIB 4.5 2.5 4 8 6 7 
23 adeno T1N1M0 IIA 5 4 2 8 6 7 
24 NSCLC NOS T4N3M0  IIIB 4.5 6 4 8 6 7 
25 large cell T2N2M0 IIIA 3 1 1.5 7 6 7 

Abbreviations: CC = cranial - caudal; LR = left - right; AP = anterior – posterior 
Squamous: squamous cell carcinoma; adeno: adenocarcinoma; large cell: large cell carcinoma; NSCLC NOS: 
non-small cell lung cancer not otherwise specified 
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Target and OAR definitions 

Target volumes, critical organs-at-risk (OAR) and other normal tissues were 
delineated on each slice conform the literature: tumour [22], lymph nodes [23], 
OAR (spinal cord, oesophagus, lungs, heart) [24]. The spinal cord was consid-
ered to be at the inner margin of the bony spinal canal and was drawn through-
out the whole CT scan. For the oesophagus, the contour of the outside muscle 
wall was followed from the distal end of the larynx to the gastro-oesophageal 
junction. Contouring of the lungs was done using automatic delineation by 
thresholding on the treatment planning system with a manual correction where 
needed. The heart was contoured from the apex to the origin of the large vessels, 
including the pericardium. 

Individual peak-to-peak tumour motion was determined using the 4D CT 
and delineations of the tumour and OAR were projected on the mid-ventilation 
phase (50% exhale) [22]. For all patients, a gross tumour volume (GTV) was 
defined based on the 4D FDG PET/CT data. The GTV was defined as the pri-
mary tumour on CT and lymph nodes positive on a PET scan or proven to be 
positive on mediastinoscopy, transoesophageal or transbronchial puncture. No 
elective nodal irradiation was performed. Syngo TrueD (Siemens Medical Solu-
tions, Malvern, PA) was used to automatically define the PET positive areas by 
using a pathology validated source-to-background method [25-27]. 

The clinical target volume (CTV) was defined as the GTV with a margin of 5 
mm. Next, the individual, anisotropic planning target volume (PTV) margins for 
photons were calculated in three directions (CC, LR and AP) using a margin recipe 
(refer to the Appendix, Eq. A1). For protons, the margins from CTV to PTV are 
determined differently, to incorporate a lateral smearing factor and range uncer-
tainties (refer to the treatment planning section hereafter and the Appendix). 

Treatment planning 

Treatment planning was performed for 3DCRT, IMRT and PSPT at MAAS-
TRO, the Netherlands Cancer Institute (NKI) and the Massachusetts General 
Hospital (MGH), using XiO (v4.34, CMS Software, St. Louis, MO), Pinnacle 
(ADAC Laboratories, Milpitas, CA) and a modified proton enabled version of 
XiO (v4.2.1), respectively. For the photon dose calculations, a multigrid super-
position algorithm [28] or equivalent was used to account for tissue heterogene-
ity. Proton dose calculations were performed using a modified version of the 
XiO pencil beam algorithm with 1-dimensional density corrections. The dose 
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matrices, with a 3x3x3 mm3 grid size, were uploaded in DICOM RT Dose for-
mat onto the secured central server. 

For all modalities, the prescribed dose was 70 Gy to the PTV in 2 Gy frac-
tions, once a day. Criteria for minimum and maximum dose were defined ac-
cording to a modified ICRU 50 protocol [29]: D98 ≥ 95% and D2 ≤ 107% of the 
prescribed dose. The maximum dose (D2) to the spinal cord and oesophagus 
equalled 54 and 80 Gy respectively, using 2 Gy fractions, independent of the 
volume. For the lungs, the MLD was limiting to a biologically equivalent dose in 
2 Gy fractions (EQD2) of 19 Gy. The MLD volume was defined as the volume of 
both lungs minus the GTVs. For the heart, three DVH metrics were defined: V60 
< 33%, V45 < 66% and V40 < 100%. 

Two plans were created per patient. First, a fixed prescribed dose (PD) of 70 
Gy to the tumour was used. Next, plans were up- or downscaled by adapting the 
fraction dose to fulfil all criteria of the OARs. The mean CTV dose was then re-
ported as maximum tolerable dose (MTD). A maximum fraction dose of 4 Gy was 
considered, resulting in an EQD2 to the tumour of 163 Gy. Table 2 summarises 
the physical and corresponding EQD2 planning criteria for the target and OAR. 
 
Table 2 Conversion table between EQD2 and physical dose for target and OAR 

Structure of interest α/β [Gy] Criterion EQD2 [Gy] Physical dose at 35 fractions [Gy] 

PTV 10 D2 163 140 

Lungs 3 MLD ≤19 Depends on distribution* 

Heart 3 D33% 
D67% 
D100% 

60 
45 
40 

63 
51 
46 

Oesophagus 3 D2 80 77 

Spinal cord 2 D2 54 59 

*The EQD2 of the MLD was calculated using the full 3D physical dose distribution and recalculating the 
equivalent dose at each point. 

Photons 

Three-dimensional conformal radiotherapy plans were created at MAASTRO 
conform the clinical guidelines. The plans consisted of multiple, optimised co-
planar beams using a multi-leaf collimator (MLC) and wedges to shape the dose 
conformally to the target. In many cases, additional small beams from the same 
directions were used with limited dose to “pull” the isodoses around the PTV. 
The energy of the photon beams was almost always 10 MV. 
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Intensity-modulated radiotherapy plans were created at the NKI consisting 
of six to ten 10 MV beams. The beam configuration was mainly coplanar with a 
few exceptions. The collimator was rotated to fit best the shape of the target and 
OARs. For the optimisation, the criteria as given above were used in combina-
tion with constraints to some additional structures to control the dose to certain 
areas or force rapid dose fall-off around the PTV. Initial optimisation was done 
using 30 segments with 25 cm2 size. When needed, the number of segments was 
increased to 50, while the segment size could be decreased to 12 cm2. 

Protons 

The passive-scattered proton plans were planned at MGH using the XiO TPS. 
Each plan consisted of at least two (preferably three) beam directions to spread 
out the dose to normal tissues. Using a mid-ventilation CT-scan of the tumour, 
first, for each beam, an aperture, range compensator, range and modulation was 
chosen to conform the 95% isodose level as closely as possible to the target, i.e. 
the CTV. Second, margins were applied to the aperture, the range compensator 
and both the range and modulation width taking setup errors and breathing 
motion into account. 

Beam directions that are parallel to density interfaces such as the lung and 
mediastinum were avoided because of the large range uncertainties even for 
small setup errors. Because of the low density of inflated lung (e.g. 0.25g/cm3), 
overshoot due to range uncertainties and applied smearing results in a substan-
tial volume of lung receiving full dose for a given beam direction. Therefore, the 
beam angles were intentionally aimed towards the mediastinum. 

Refer to the Appendix for a detailed description of the proton planning process. 

Analysis 

To minimise the uncertainty in the analysis, all of the DVH metrics (refer to 
Table 3,4) were centrally derived by MAASTRO from the 3D dose matrices. 
Since the PTV is different for photon and proton modalities due to different 
margin algorithms, we chose the CTV for target comparison. We compared 
integral doses (ID), defined as the mean dose to the imaged patient, as dosimet-
ric estimate for normal tissue toxicity differences between the three modalities. 

For an estimation of the differences in the therapeutic windows of the treat-
ment modalities, we introduced surrogate therapeutic indices (TIs) for the 
lungs, oesophagus and spinal cord. These were derived by dividing the mean 
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dose to the target by the essential dose metric of the structure. For example, for 
the lungs this would result in a TIMLD defined by the MTD over the MLD. 

To quantitatively assess the differences in conformity of the different treat-
ment modalities, various indices have been proposed in the literature [30]. Be-
cause we wanted to compare the different treatment modalities based on target 
coverage and unwanted dose to the non-critical as well as the critical normal 
tissue (OARs), we used a “conformation number” (CN) as defined by: 

  CN = CTV95
CTV

× CTV95
V95

 (Eq. 1) 

where CTV95 and V95 are the volume of the CTV and the overall volume respec-
tively, receiving minimally 95% of the target dose. Refer to the Appendix or [31] 
for a more elaborate description. 

To investigate the volume of the low dose region in the patient, a sparing in-
dex (SPIN50/10) was used [32]: 

  
50

1010/50 1 VSPIN −=  (Eq. 2) 

where 50
10V  is the ratio of the volume of tissue that receives between 10% and 50% 

of the prescribed dose to the irradiated volume. The irradiated volume was de-
fined as the volume of tissue that receives at least 0.5% of the prescribed dose. 

For both CN and SPIN50/10, a value of 1 would indicate a perfect, theoretical 
dose distribution solely around the target and none in the healthy tissue. 

Two-tailed, signed-rank Wilcoxon tests were calculated using SPSS (v15, 
Chicago, IL) and Matlab (The MathWorks, Natick, Massachusetts) to determine 
the significance of pair-wise differences between modalities. P-values less than 
5/3% were considered significant. 

We must note that, in general, some of the mentioned metrics are not suita-
ble as absolute measures of plan quality or treatment modality performance. For 
instance, when considering volumes of OAR, they can depend on the imaged 
patient volume (e.g. spinal cord) and of course the anatomical differences of the 
patients. In this study, we used these metrics in a relative way and compared 
these metrics pair-wise as indicated above. This way, a statement of better plan 
quality is possible. 

Results 

Of the 25 included patients for the iso-effective protocol (Table 1), all were 
planned with 3DCRT and IMRT and 23 with PSPT. Two patients with tumours  
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Figure 1 Comparison of dose distributions of 3DCRT, IMRT and PSPT treatment plans (columns) for three 
cases (rows). The target is shown (thick red line) with isodose lines of 1, 10, 25, 50 and 67 Gy (thin red line). 
 

 
Figure 2 DVHs for patient #2 where the prescribed dose of 70 Gy resulted in exceeding the critical MLD level  
(upper row). Lowering the dose to the maximum tolerable dose resulted in lower DVH (bottom row), showing 
larger under-dosage for 3DCRT (solid) than for IMRT (dashed) or PSPT (dotted). 
*MLD refers to the DVH of both left and right lung volumes minus the GTV. 

#2
#1

5
3DCRT IMRT PSPT

#6

*
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located very cranially were excluded from proton planning. In real life, these 
patients would not be treated with PSPT because of the limited beam directions 
possible and because of remaining range uncertainties due to accuracy in the 
positioning of the arms. Because of the pair-wise analysis, we report on the re-
maining 23 corresponding datasets. 

In Figure 1, mid-PTV dose distributions are shown for three typical cases. In 
general, IMRT showed a more conformal dose compared to 3DCRT and both 
showed a fairly large low dose region outside the target. PSPT showed its typical 
clear-edged beams with no exit dose. Figure 2 shows the DVHs for one of the 
patients (#2). 
When irradiating with protons, it was found (Table 3) that, while prescribing the 
same dose to the target, the average ID was significantly lower than for 3DCRT 
(59%, p<0.001) and IMRT (43%, p<0.001). Except for V30Gy, all lung volume met-
rics were significantly higher for photons than for protons. The average MLD 
was significantly higher for 3DCRT (40%; p<0.001) and IMRT (21%; p<0.001) 
when compared to PSPT. This resulted in a significantly higher TIMLD for PSPT 
when compared to 3DCRT (51%, p<0.001) or IMRT (39%, p<0.001). 

For the spinal cord and oesophagus, the average maximum doses (D2) did 
not differ significantly between the three modalities. The average mean dose to 
the oesophagus was slightly larger for 3DCRT (16%, p<0.001) and IMRT (6.6%, 
p=0.02) than for PSPT. All average heart metrics were significantly lower for 
protons when compared to photons, except for the V65Gy, which was 23% lower 
for IMRT (p=0.002). The average TIDmean for both photon modalities was 44 
times lower (p<0.001) than for protons. 

With respect to the conformity of the three different modalities, it was 
shown that IMRT had an average 50% higher CN (p<0.001) while 3DCRT 
scored equally compared to PSPT. Also, the SPIN50-10 was significantly worse for 
PSPT than for 3DCPT and IMRT: 0.61 ± 0.09 vs. 0.70 ± 0.05 (p<0.002) and 0.72 
± 0.04 (p<0.001), respectively. 
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Table 3 DVH metrics of the photon and proton treatment plans for the prescribed and maximum tolerable 
dose. Data for the target and the organs at risk are given as mean physical dose values with the standard devia-
tion in parenthesis. Significant differences (p-values < 0.0167) of the photon versus the proton results are 
marked with an asterisk (*). 

 PD = 70 Gy MTD   

 
Photons   Protons  Photons   Protons 
3DCRT IMRT PSPT 3DCRT IMRT PSPT 

Target (CTV)       
Dmean 71.3 (1.0)* 70.7 (0.9) 70.3 (0.7) 75.0 (22.2) 81.5 (20.8) 75.0 (21.2) 
D2 73.9 (1.4)* 73.1 (1.9)* 72.0 (0.8) 77.6 (22.2) 84.2 (21.6) 76.7 (21.4) 
D98 68.9 (1.1) 68.7 (1.1) 68.7 (1.0) 72.6 (22.2) 79.2 (20.5) 73.3 (21.0) 
CN 0.25 (0.07) 0.38 (0.10)* 0.25 (0.08) 0.25 (0.07) 0.38 (0.10)* 0.25 (0.08) 

Patient       
ID 11.0 (5.4)* 9.9 (4.4)* 6.9 (3.9) 10.2 (3.2)* 10.6 (3.7)* 6.8 (3.1) 
SPIN50-10 0.70 (0.05)* 0.72 (0.04)* 0.61 (0.09) 0.71 (0.05)* 0.73 (0.04)* 0.62 (0.09) 
TIID 8.6 (5.2)* 9.1 (5.4)* 15.3 (11.5) 8.6 (5.2)* 9.1 (5.4)* 15.3 (11.5) 

Organs at risk 
Lung       

V30Gy 21.0 (9.8)* 16.3 (7.7) 16.8 (8.9) 20.3 (7.6)* 17.7 (6.6) 16.7 (8.1) 
V20Gy 27.1 (12.6)* 23.4 (10.2)* 20.5 (10.4) 26.4 (9.5)* 25.0 (9.3)* 20.2 (10.2) 
V13Gy 37.0 (17.5)* 32.1 (11.8)* 23.3 (12.0) 36.1 (12.8)* 34.1 (10.2)* 23.1 (11.5) 
V5Gy 53.1 (17.0)* 56.9 (12.9)* 27.5 (13.9) 53.2 (15.5)* 59.1 (10.2)* 27.5 (13.7) 
MLD 18.9 (7.3)* 16.4 (5.5)* 13.5 (6.2) 18.2 (4.1)* 17.9 (4.1)* 13.6 (5.6) 
TIMLD 4.5 (1.9)* 4.9 (2.0)* 6.8 (3.9) 4.5 (1.9)* 4.9 (2.0)* 6.8 (3.9) 

Spinal cord       
D2 40.0 (21.4) 42.6 (9.6) 37.9 (23.2) 37.0 (17.1) 46.8 (6.3)* 35.5 (18.1) 
TID2 6.7 (15.2) 1.8 (0.7)* 31.7 (105) 6.8 (15.7) 1.8 (0.7)* 52.1 (198) 

Oesophagus       
D2 65.0 (15.7) 64.7 (15.8) 63.6 (17.9) 64.5 (13.8) 70.3 (11.0) 65.7 (17.3) 
Dmean 28.3 (13.9)* 26.0 (12.1) 24.4 (13.7) 26.3 (9.4)* 27.5 (11.1)* 23.7 (11.7) 
V55Gy 31.0 (20.2) 26.4 (18.1) 28.3 (19.1) 22.0 (16.2) 27.3 (17.3) 22.2 (16.7) 
V35Gy 38.3 (22.7)* 34.9 (19.9) 35.3 (20.3) 37.8 (20.2) 37.0 (17.4) 35.3 (18.7) 
TID2 1.3 (0.8) 1.3 (0.7) 2.0 (4.1) 1.3 (0.8) 1.3 (0.7) 2.0 (4.1) 

Heart       
Dmean 15.3 (11.6)* 14.3 (10.3)* 7.6 (7.2) 14.3 (9.5)* 15.3 (10.0)* 7.5 (7.1) 
V65Gy 4.4 (5.5)* 2.3 (3.3)* 3.0 (4.0) 2.1 (3.0) 2.0 (2.9) 2.3 (4.2) 
V45Gy 13.3 (13.3)* 9.1 (9.3)* 6.2 (6.5) 10.1 (9.6)* 9.6 (8.5)* 6.1 (6.3) 
V40Gy 15.1 (14.5)* 11.5 (11.7)* 7.2 (7.2) 12.4 (10.8)* 12.4 (10.9)* 7.2 (7.1) 
V30Gy 19.5 (17.2)* 17.0 (16.1)* 12.0 (13.4) 18.5 (15.1)* 18.5 (15.4)* 11.7 (13.1) 
V20Gy 27.0 (23.7)* 25.3 (22.2)* 15.1 (15.6) 26.5 (19.8)* 27.6 (21.3)* 15.0 (15.4) 
V10Gy 40.9 (31.8)* 41.0 (31.9)* 18.1 (17.5) 40.7 (30.6)* 45.0 (33.4)* 18.1 (17.3) 
TIDmean 13.1 (16.8)* 13.0 (14.9)* 572 (2074) 13.1 (16.8)* 13.0 (14.9)* 572 (2074) 

Abbreviations: PD = prescribed dose; MTD = maximum tolerable dose; 3DCRT / IMRT / PSPT = 3D confor-
mal photon / intensity-modulated photon / 3D passive scattered proton radiotherapy; Dx = dose (Gy) given to 
x% (or mean) of the volume; CN = conformation number (Eq. 4); ID = integral dose in Gy; TIy = therapeutic 
index (MTD / y); VzGy = percent volume of the total organ’s volume that receives more than z Gy (for the 
lung results, the volume was taken as both lungs minus the PTV for photons); MLD = mean lung dose in Gy 
(lung volume taken as both lungs minus the GTVs) 
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Table 4 DVH metrics of the photon and proton treatment plans, split for plans where all modalities simulta-
neously could escalate the dose to the tumour and some that did not. Metric notification identical to Table 3. 

 One or more modalities had to de-escalate (n=13) All modalities could escalate (n=10) 

 
Photons   Protons  Photons   Protons 

3DCRT IMRT PSPT 3DCRT IMRT PSPT 

Target (CTV)       

Dmean 66.7 (22.8) 76.6 (19.2) 64.6 (10.1) 85.8 (17.0) 87.9 (22.0) 88.5 (24.5) 

D2 69.4 (22.7) 79.0 (19.6) 66.2 (10.5) 88.3 (17.3) 91.1 (23.2) 90.4 (24.6) 

D98 64.3 (22.8) 74.4 (19.0) 63.1 (10.0) 83.5 (16.7) 85.6 (21.7) 86.4 (24.5) 

CN 0.26 (0.08) 0.41 (0.12)* 0.28 (0.10) 0.23 (0.06) 0.34 (0.07)* 0.23 (0.05) 

Patient       

ID 11.8 (3.1)* 12.3 (3.7)* 8.1 (3.1) 8.2 (2.1)* 8.3 (2.1)* 5.0 (2.0) 

SPIN50-10 0.69 (0.05)* 0.72 (0.04)* 0.63 (0.08) 0.74 (0.04)* 0.74 (0.03)* 0.60 (0.10) 

TIID 6.7 (5.4)* 7.4 (5.4)* 11.5 (11.6) 11.1 (3.9)* 11.4 (4.6)* 20.2 (9.9) 

Organs at risk 

Lung       

V30Gy 22.6 (8.4) 18.8 (6.8) 18.8 (9.2) 17.2 (5.4) 16.4 (6.4)* 13.9 (5.9) 

V20Gy 30.1 (9.9)* 26.9 (9.7) 23.4 (11.2) 21.6 (6.7)* 22.5 (8.5)* 16.1 (7.2) 

V13Gy 40.2 (14.5)* 36.5 (10.3)* 27.1 (12.5) 30.8 (7.9)* 31.0 (9.6)* 17.8 (7.8) 

V5Gy 60.4 (15.7)* 63.7 (7.6)* 32.3 (15.1) 43.9 (9.4)* 53.2 (10.5)* 21.4 (9.0) 

MLD 19.8 (3.6)* 19.5 (3.3)* 15.4 (5.7) 16.1 (3.8)* 15.8 (4.2)* 11.3 (4.8) 

TIMLD 3.6 (1.8)* 4.2 (1.9)* 4.9 (2.5) 5.6 (1.5)* 5.9 (1.9)* 9.2 (4.2) 

Spinal cord       

D2 42.3 (16.2) 48.3 (4.8) 44.7 (13.2) 30.1 (16.5) 44.8 (7.7)* 23.6 (17.1) 

TID2 6.9 (19.5) 1.6 (0.37) 1.7 (0.87) 6.7 (9.5) 2.1 (0.9)* 117 (295) 

Oesophagus       

D2 59.0 (9.5) 69.8 (11.5) 61.2 (19.8) 71.7 (15.6) 71.0 (10.7) 71.5 (11.9) 

Dmean 31.2 (7.6) 33.1 (10.7) 29.8 (10.7) 20.0 (7.9)* 20.2 (6.6)* 15.9 (7.7) 

V55Gy 25.5 (18.5) 35.1 (17.1) 26.8 (19.0) 17.6 (12.0) 17.2 (11.8) 16.3 (11.6) 

V35Gy 49.5 (16.3) 45.5 (17.7) 45.5 (17.2) 22.5 (13.5) 26.0 (9.1)* 22.0 (10.6) 

TID2 1.2 (0.78) 1.2 (0.81) 2.5 (5.4) 1.3 (0.8) 1.3 (0.59) 1.3 (0.72) 

Heart       

Dmean 17.3 (9.3)* 18.9 (9.8)* 9.6 (7.9) 10.4 (8.7)* 10.5 (8.5)* 4.7 (5.0) 

V65Gy 1.3 (2.5) 2.2 (3.6) 2.5 (5.4) 3.1 (3.5) 1.7 (1.7) 2.0 (2.1) 

V45Gy 10.9 (9.1) 12.5 (9.0)* 7.8 (7.3) 9.0 (10.6)* 5.7 (6.1) 4.0 (4.0) 

V40Gy 14.3 (10.1) 16.3 (11.5)* 9.2 (8.2) 10.0 (11.6)* 7.2 (7.9)* 4.6 (4.6) 

V30Gy 23.3 (14.9) 24.1 (15.6)* 15.5 (15.3) 12.2 (13.4)* 11.3 (12.2)* 6.7 (7.7) 

V20Gy 33.2 (19.2) 35.0 (21.0)* 19.8 (17.2) 17.8 (17.8)* 17.9 (18.3)* 8.8 (10.5) 

V10Gy 53.2 (31.8)* 56.1 (31.6)* 23.6 (19.0) 24.4 (20.7)* 30.5 (31.4)* 10.9 (12.1) 

TIDmean 11.3 (19.8)* 9.0 (12.6)* 941 (2744) 15.4 (12.3)* 18.0 (16.8)* 91.5 (126.8) 

Abbreviations identical to Table 3. 
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After up- or downscaling all plans to clinically acceptable MTD by fulfilling all 
planning criteria, the prescribed dose to the tumour of 70 Gy could be increased 
for 52%, 83% and 61% of the patients for 3DCRT, IMRT and PSPT, respectively 
(Table 3). The other patients received the prescribed dose or lower. Refer to 
Figure 2 for DVHs of such a case (#2). 

The mean MTD was 8.6% higher for IMRT when compared to PSPT, alt-
hough this was not significant. The 3DCRT MTD did not differ from PSPT. The 
integral dose was higher again for both photons modalities when compared to 
protons (p=0.005). Once more, all lung volume metrics were significantly higher 
for photons than for protons, except for V30Gy. The average MLD was signifi-
cantly higher for 3DCRT (34%; p<0.001) and IMRT (32%; p<0.001) when com-
pared to PSPT.  

For the spinal cord, the average maximum dose (D2) was 42% higher for 
IMRT than for PSPT (p=0.005). The average mean dose to the oesophagus was 
larger for 3DCRT (11%, p=0.007) and IMRT (16%, p=0.005) than for PSPT. All 
average heart metrics were significantly lower for protons when compared to 
photons, except for the V65Gy, which did not differ significantly. 

Due to the rescaling of the dose matrices, the DVH metrics that are based on 
relative dose levels or ratios typically do not change. One exception is the TID2 
for the spinal cord where the accuracy of the D2 is limited by some very small 
irradiated volumes.  

For 10 patients (two stage I, one stage II and 7 stage III), all modalities could 
escalate the dose to an MTD of around 87 Gy (Table 4). The average integral 
dose was about 65% higher for photons than for protons (p=0.005). The MLD 
was 42% higher for 3DCRT (p=0.007) than for PSPT, while it was 40% higher 
for IMRT (p=0.005). The TIID and TIMLD were nearly double of those of the non-
escalated group. For the spinal cord, the maximum dose was 90% higher for 
IMRT than for PSPT (p=0.005). For the oesophagus, the maximum dose was 
approximately 71.5 Gy for all modalities. The mean dose to the heart for pho-
tons was double the dose for protons, while the V40Gy was 117% higher for 
3DCRT (p=0.013) and 57% higher for IMRT (p=0.013) than for PSPT. 

Further sub-group analysis based on tumour volume, location or stage did 
not provide new information and is omitted from this report. 
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Discussion 

With the first results from 23 cases of the lung cohort of the ROCOCO trial, we 
have shown that for the treatment of NSCLC, Stage I to III, proton radiotherapy 
is superior to photon radiotherapy, in terms of reduction of the normal tissue 
dose. Based on the integral dose, an absolute improvement of 3-4 Gy was seen 
for protons, resulting in an improved therapeutic index in the order of 15 com-
pared to 9. 

In the current literature, with a few exceptions [33-35], ten or less patients 
were used in the published treatment planning comparisons. Furthermore, in 
most of the published papers it is unclear what the selection criteria were of the 
included patients, possibly introducing selection bias. Publications dating before 
2000 did not consider intensity modulated radiation therapy as a modality for 
photon therapy or intensity-modulated particle therapy. By using a multicentric 
approach, with consensus on a predefined protocol and a relatively large 
amount of patients, a high level of confidence was achieved in the current study 
as the established clinical experience of the participants was used. 
 
In the present study we found that the average V20Gy of the lungs were lower for 
both IMRT and PSPT compared to 3DCRT (16.3%, 16.8% and 21%, respective-
ly). Regarding the MLD, it was found that this was lowest for PSPT (13.5 Gy) 
when compared to 3DCRT (18.9 Gy) or IMRT (16.4 Gy). Previous research has 
shown that the V5 of the lungs was also associated with lung toxicity [36]. This 
study showed that the V5 for protons was less than half the value for both pho-
ton modalities. 

While the average maximum dose to the spinal cord did not significantly 
change between all three modalities, it was shown that the average of the corre-
sponding individual therapeutic index was significantly higher for PSPT (31.7) 
than for IMRT (1.8). This indicates that there are a few outliers present in the 
derived metrics. 

Furthermore, the maximum dose to the oesophagus was nearly equal for all 
three modalities. The V55Gy appeared to be lowest for IMRT (26.4%). When con-
sidering the V35Gy however, it was equal for IMRT and PSPT (35%). The mean 
heart dose for photons was nearly double the dose of protons, while the V40Gy, 
which is known for its correlation to heart toxicity was 110% and 60% higher for 
3DCRT and IMRT than for PSPT [24].  
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It is expected that the lower dose to the normal tissues with proton therapy 
will lower the probability of normal tissue complications and result in a better 
quality of life in an iso-effective setting. Clinical validated models have been 
published showing this for a variety of acute and late toxicities [37-40].  

Radiation therapy is known for its statistically significant increased risk of 
secondary malignancies [41]. The hypothesis of reduced late side effects with 
proton therapy has been investigated intensely and tends to be correctly sup-
ported, although large uncertainties in the relative biological effect, among oth-
ers, remain [42-46]. Additionally, improvements in the treatment delivery 
equipment further reduce the amount of secondary neutron production, which 
is the main contributor to the scattered dose to the normal tissue [47-49]. Alt-
hough the occurrence of secondary tumours for lung cancer patients could be 
considered irrelevant due to the short life expectancy, the expected reduced 
carcinogenic risk should be mentioned with respect to the changing NSCLC 
population and overall treatment improvements.  

Another advantage of the small low dose volume and limited number of 
beams for protons is that it offers the opportunity to better re-irradiate for loco-
regional metastasis. 

The increased therapeutic ratios showed that there is room for iso-toxic 
dose-escalation with protons for certain patients. A unicentric study including a 
selection of 15 stage III patients has shown that dose-escalation from 63 to 74 
Gy was possible with PSPT while keeping normal tissue toxicity lower than with 
3DCRT or IMRT [33]. Early results of a subsequent phase II trial show that a 
dose prescription to 74 Gy is well-tolerated with proton therapy [50]. 

The current report predicts that this still holds for MTDs exceeding these lev-
els with about 10 Gy. For 40% of the patients, dose-escalation was possible to a 
mean level of more than 85 Gy for all modalities. With dose levels of such abla-
tive magnitude, while still maintaining the dose to the OAR below a toxic level, it 
is expected that local tumour control will significantly be increased and conse-
quently will lead to a further improved survival with acceptable toxicity. A phase 
II dose-escalation trial is currently being performed to investigate sub-boosting 
of high FDG-PET uptake regions to such high doses with IMRT [51]. PSPT will 
not be part of this trial because range uncertainties make it nearly impossible to 
ensure a certain limited dose to an OAR by means of forward planning.  

When the treatment plans of the three modalities were evaluated for possible 
dose-escalation, it showed that sometimes the dose could be increased for one 
modality while it had to be lowered for another. The fact that this heterogeneity 
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cannot be predicted beforehand makes generalisation of the achieved results diffi-
cult. This raises the demand for an individualised approach when trying to classify 
eligibility of a patient to receive proton therapy instead of less expensive photon 
therapy (see Slides, Supplemental Digital Content 1, which show a Proton therapy 
reimbursement decision tree for the Netherlands and figures 1 and 2). 

The performance of the CN and SPIN50-10 is worse when using PSPT instead 
of 3DCRT or IMRT. The error margins that are needed to compensate in depth 
and width and the fact that only two to three beams are used generate an irradi-
ated volume that exceeds the PTV used for photons. However, even though 
PSPT suffers from these disadvantages, the dose to the normal tissues remains 
much lower than for 3DCRT and IMRT. This indicates that the use of conform-
ity and dose spill indices is useful for plan comparison but they do not cover the 
full plan evaluation and cannot by themselves indicate prevalence of either 
treatment modality. 

One might argue that passive scattered proton therapy is not the latest and 
most advanced type of particle therapy, but in spite of this the current results 
show that it is favourable in terms of normal tissue dose reduction when com-
pared to photon radiation therapy. It could be argued that if results were derived 
from modern scanning proton beam therapy, the dose distributions could im-
prove due to reduced secondary neutron production [47,52] and improved con-
formity. Recent publications show indeed that intensity-modulated proton ther-
apy (IMPT) is able to lower the dose to the normal tissue and allows dose-
escalation up to 88 Gy for a selection (n=20) of extensive stage IIIB NSCLC pa-
tients [53]. 

For stage I NSCLC patients, stereotactic radiotherapy (SRT) is increasingly 
used. In a meta-analysis, it was previously found that proton therapy results in 
similar survival rates as SBRT [9]. In another publication, the influence of differ-
ent breathing suppression methods was investigated in a PSPT, IMPT and SRT 
treatment planning study [34]. Both proton techniques were superior in sparing 
the normal tissue when compared to SBRT. However, the differences were small 
and improved local control rates needed clinical validation. More recent publica-
tions report that PSPT and especially IMPT do benefit from the superior dose 
distribution and result in significant normal tissue sparing [54,55]. 

Within our current dataset, there were individual cases (stage IIA and IIIA) 
that reached MTD levels well above 100 Gy with any of the three modalities. Sub-
group analysis did not show a significantly higher proton dose level for tumours 
with different staging or tumour size. This again indicates that the best treatment 

http://links.lww.com/JTO/A179
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modality could be difficult to predict beforehand and should be investigated on 
an individual basis. Future research should preferably include other modalities 
such as IMPT or even C-ion radiotherapy. The ROCOCO consortium is consid-
ering to do so with the datasets and methods presented here. However, up to this 
date we have not found a reliable method to calculate treatment plans for these 
new treatment modalities when delivered to moving lung tumours. 

The evidence for the dosimetric improvements of particle therapy is still 
hampered by sufficient clinically validated results [13-19,56]. It is however pos-
sible to use highly accurate dose calculations and well-established predictive 
radiobiological models [57-59] in an in silico approach as a surrogate to deter-
mine the (cost-)effectiveness of particle therapy with sufficient reliability. A 
signal in that direction is the fact that the in silico approach used in this study 
was acknowledged and justified by the Dutch Health Care Insurance Board 
(CVZ) [60] as a vital supplement to prospective RCTs. 

Recently published studies show the potential cost-effectiveness of particle 
therapy in NSCLC. However, they emphasise the uncertainty in determining 
this and the probability of making a wrong decision with regard to establishing a 
particle centre [61]. It is, therefore, important that when new evidence becomes 
available reassessment of the (cost-)effectiveness of particle therapy in lung can-
cer should be carried out. Next, the theoretical benefit should be confirmed by 
clinical evidence from well-designed prospective studies. We argue that the re-
sults of in silico trials such as the one currently presented aid to choose the most 
relevant areas of research for RCTs involving proton therapy. 

Conclusions 

Using an in silico approach, we found that while maintaining a good coverage of 
the target, proton radiotherapy significantly reduced the dose to the normal 
tissue, as indicated by a lower integral dose, when compared to conventional or 
intensity-modulated photon therapy of NSCLC patients. 

Furthermore, the presented data show that dose escalation is possible and 
that an increased local tumour control can be expected, hence improving sur-
vival. We believe that carefully designed RCTs should now be performed to 
validate these results. 

The current findings provide an incentive to investigate other tumour sites 
and modalities such as C-ion radiotherapy in an in silico set-up. For NSCLC 
patients, the possibilities of hypo-fractionated delivery schedules could be inves-



 ACKNOWLEDGMENTS | 103 

 

tigated as well. Finally, since investment costs are high, it would be valuable to 
investigate whether particle therapy can be considered cost-effective.  
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Appendix 

Margin recipe 

The clinical target volume (CTV) was defined as the GTV with a margin of 5 
mm. Next, the individual, anisotropic planning target volume (PTV) margins 
for photons (Eq. A1) were calculated in three directions (CC, LR and AP) using 
a margin recipe [62]  

  87.05.2 22 AM PTV ++Σ⋅= σ   (Eq. A1) 

with Σ the overall standard deviation (SD) of the systematic errors, σ the overall 
SD of the random errors and A the peak-to-peak amplitude of the tumour. We 
used the systematic and random set-up errors as determined in MAASTRO’s 
clinical setting. Because the mid-ventilation CT was used there was no systemat-
ic motion error included.  

Proton Treatment Planning 

The passive-scattered proton plans were planned using the XiO TPS (v4.2.1, 
CMS Software, St. Louis, MO). In passive-scattered proton radiotherapy, each 
beam delivers a homogenous dose to the target volume. In order to spread-out 
the dose to normal tissues each plan consists of at least two, but preferably three, 
beam directions. Although range uncertainties and setup errors are taken into 
account in the treatment planning process, the use of multiple beam directions 
minimizes the risk of underdosing the target due to unexpected density varia-
tions due to e.g. heavy breathing or a substantial change in the average tumour 
position with respect to the patient anatomy as used for treatment planning.  
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Given a mid-ventilation CT-scan of the tumour and a description of the 
breathing-induced excursion from this position in all three directions, treatment 
planning of proton radiotherapy at MGH is a two-step process. As we may 
choose to treat only a subset of fields on any given treatment day, it is important 
that each field separately ensures target coverage. 

First, for each beam, we conform the 95% isodose level as closely as possible 
to the target, i.e. the CTV. The aperture shape for each beam is chosen to con-
form the 95% isodose level in all lateral directions. The proton beam range and 
range compensator are chosen to conform distally (downstream) to the target 
volume. The radiological “thickness” of the target (in the depth direction) de-
termines the choice of modulation width of the spread-out Bragg peak (SOBP). 
In our centre, we employ M98 for the definition of modulation, i.e. the distance 
between the proximal 98% and the distal 90% isodose level. Because of the na-
ture of passive-scattered proton radiotherapy, tight proximal coverage cannot be 
achieved except for those regions where the radiological thickness equals the 
maximum thickness. 

Second, margins were applied to the aperture, the range compensator and 
both the range and modulation width. Range uncertainties of 3.5% and 1 mm 
were applied [63]. The same range uncertainty to the modulation width was 
applied, taking into account that the increase in range already translated into an 
increase in necessary modulation width. For example, a field with a range of 16 
cm and modulation of 10 cm after step one, will have a range and modulation 
width of 16.8 cm and 11.2 cm, respectively. 

Aperture expansion and range compensator smearing was applied [64], 
meaning that the safety margin is typically less than the summation of setup 
error and half the peak-to-peak breathing amplitude. Aperture expansion (i.e. 
lateral margining) compensates for setup errors of the tumour in the lateral 
direction with respect to the central beam axis. Range compensator smearing 
(i.e. distal margining) is applied to take into account the effect of the shift in the 
patient density distribution and the detrimental effects of these density varia-
tions on distal target coverage. The overshoot due to smearing depends on the 
local variation in the range compensator thickness and hence is not uniform 
across the lateral extent of a field. The exact magnitude of lateral and distal mar-
gining depends on the extent of the breathing motion, but will never be less than 
the expected maximum setup error, refer to Table A1. 

Our TPS only allows a single uniform value for smearing on a per range 
compensator basis. Lateral aperture margins differed depending on the breath-
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ing motion in a specific direction. All patients’ plans consisted of fields in the 
transversal plane only. 

Conformity index 

Assessment of the differences in conformity when comparing treatment plans 
from different modalities has been published before [30]. To compare target 
coverage and unwanted dose to the non-critical as well as the critical normal 
tissue (OARs), we chose to use the “conformation number” (CN) [31]. 

The CN takes into account the quality of tumour irradiation as indicated by 
the first part of the equation (Eq. A2) and the irradiation of the non-critical 
tissue, indicated by the second part. 

  CNT,ref = VT,ref

VT
× VT,ref

Vref
 (Eq. A2) 

where VT,ref is the volume of the target receiving a dose equal to or greater than 
the reference dose, VT is the volume of the target, Vref is the overall volume re-
ceiving a dose equal to or greater than the reference dose or target dose [29]. 
The reference dose was chosen to be 95% of the prescribed dose to the PTV and 
the CTV was again chosen as the target volume. For clarity, the CN can thus be 
written as follows in our case: 

  CN = CTV95
CTV

× CTV95
V95

 (Eq. A2) 
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Abstract 

To quantitatively assess the effectiveness of proton therapy for individual pa-
tients, we developed a prototype for an online platform for proton decision sup-
port (PRODECIS) comparing photon and proton treatments on dose metric, 
toxicity and cost-effectiveness levels. An evaluation was performed with 23 head 
and neck cancer datasets.  
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Introduction 

Due to the continuous development of new cancer treatments and the sophisti-
cation of existing radiotherapy, it has become increasingly challenging to identi-
fy the best treatment for a specific patient [1]. A multifactorial clinical decision 
support systems (CDSS) could help meet this challenge when combining clini-
cal, dosimetric and cost variables (e.g. information about the patient or tumour) 
with expert knowledge (e.g. on a specific treatment modality) to make a quanti-
tative treatment comparison [2-7]. Such a tool would facilitate individualised 
radiotherapy treatment.  

Given its favourable dose distribution, proton therapy is expected to be less 
toxic and more effective than photon therapy [8-10]. As a result, many oncology 
centres around the world have introduced proton therapy over the last decade 
[11]. However, planning studies show that not all patients would benefit from 
this more expensive treatment [12,13]. Clinical data-exchange platforms have 
been developed previously to justify patient stratification for a fair and efficient 
use of the treatment [14-16]. However, its cost-effectiveness compared to con-
ventional photon radiotherapy is yet unevaluated for many cancers [17-19]. 

Dutch health authorities have agreed upon the need for a model-based indi-
cation methodology to select patients eligible for proton radiotherapy [20-22]. 
Supplementary Fig. 1 illustrates a Dutch decision tree regarding proton therapy 
reimbursement. It determines whether a patient is expected to benefit sufficient-
ly from proton therapy justifying reimbursement of the treatment costs. For an 
effective and efficient evaluation of these aspects, a CDSS is needed that sup-
ports the claim whether or not proton therapy is expected to have a clinical ben-
efit in a given patient. 

We postulate that such a CDSS should have at least three levels. The first do-
simetric level should evaluate whether a radiotherapy plan meets predefined 
dosimetric threshold for a patient’s organs at risk (OARs). The second toxicity 
level should estimate whether the probability of radiation induced normal tissue 
toxicity for the patient is different between different treatment plans. The third 
cost-effectiveness level should evaluate if the extra costs for a certain increase in 
effectiveness does not exceed a threshold set by society. The effectiveness is de-
fined in quality-adjusted life years (QALYs), which are calculated by estimating 
the quality and quantity of life extended by a medical intervention [23].  

To this end, we developed an online, three-level photon vs. proton CDSS 
prototype named PRODECIS (PROton DECIsion Support). In this study, we 



 112 | 7. PRODECIS: PROTON DECISION SUPPORT 

evaluated the system’s performance for patients with head and neck cancer 
(HNC). Data is provided online on www.cancerdata.org [24]. 

Materials and Methods 

We designed a modular CDSS (Fig. 1) to support the decision between proton 
and photon therapy. The system was implemented in Java SE 7 (Oracle, Red-
wood Shores, CA, USA) and Matlab 2010b (Mathworks, Natick, MA, USA) and 
designed to import photon and proton treatment plans in DICOM-RT format. 
A PHP webform was created to upload the data and additionally ask for clinical 
parameters of the complication models. All patient information and results were 
anonymously stored in a MySQL Workbench 6.0 (Oracle, Redwood Shores, CA, 
USA) database. 

Computation services were separated into three levels. On the dosimetric 
level, we adopted in-house dose volume histogram (DVH) metrics calculation 
algorithms to extract mean doses from both photon and proton plans. On the 
toxicity level, we used a number of validated late toxicity prediction models 
using the TRIPOD Type 4 standard [25] (e.g., regression models [23,26,27]). On 
the cost-effectiveness level, we incorporated published Markov models10 ([23]) 
to assess the QALY and costs of the treatment.  

Experimental setup 

To test the system, we used datasets from a ROCOCO cohort of 25 HNC patients 
for whom both photon and proton plans were available [13]. First, on the dosi-
metric level we computed the dose to the supraglottis area, the superior pharyn-
geal constrictor muscle (PCM), and the ipsi- and contralateral parotid glands. 

Then, on the toxicity level we estimated the normal tissue complication 
probability (NTCP) for xerostomia and swallowing dysfunction at 6 and 12 
months after therapy, using the models published in previous work [23,26,27]. 
Since the parotid gland location was indicated with left or right in the given 
datasets, we defined the ipsi- and contralateral parotid glands as receiving high-
er or lower doses, respectively. 

                                                           
10 Available on www.predictcancer.org 

http://www.cancerdata.org/
http://www.predictcancer.org/


 RESULTS | 113 

 

Finally, on the cost-effectiveness level we used a Markov model constructed 
for HNC patients [23] with pre-treatment RTOG grade 2- swallowing dysfunc-
tion and xerostomia. The model is described in Supplementary Table 1. 

Threshold definition 

For the purpose of treatment comparison, we collected various thresholds to de-
fine clinical benefit. On the dose comparison level, from expert opinions and lit-
erature, we defined a clinical benefit when a plan met clinical, desirable OAR 
mean dose thresholds being parotid gland < 26 Gy, superior PCM < 50 Gy and 
supraglottis area < 50 Gy [28-30].  

On the toxicity level, based on the CTCAEv4.0 toxicity criteria, we consid-
ered clinical benefit as a predicted reduction in probability of grade 2+ toxicity 
of >10%. In addition, we used the definition of a “complication profile” where, 
for each patient, the toxicity probability reductions exceeding 5% were summed 
and clinical benefit was set at a total reduction of 15% or more [31].  

On the cost-effectiveness level, we set the acceptable cost per additional QALY 
derived from the Markov model at €80,000. This is the official threshold proposed 
in the Netherlands by the Dutch Council for Public Health and Care [32]. 

Statistics  

We used two-tailed Wilcoxon signed rank tests to determine whether the differ-
ences between plans were significant. P-values of less than 0.05 were considered 
significant.  

Results  

System development 

The PRODECIS prototype was successfully built on a pipelined image pro-
cessing framework [33] from within our institute. For scaling purposes, each 
level of computations was encapsulated into a module and was then installed 
identically in two parallel pipelines (A and B in Fig. 1). After the whole plan of a 
treatment was transferred, the respective pipeline began computing. Once both 
computation pipelines were done, the results were delivered to the third pipe-
line, comparing the multilevel results with the defined threshold per level. Final-
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ly, the comparison results were emailed back to the user. From the 25 datasets, 
the calculations did not succeed for two, due to DICOM compatibility issues. 
For every patient, it took approximately five minutes for a computer with stand-
ard specifications (Intel® Core™ i5-3210M CPU processor with 2.5GHz, 4 GB 
memory) to finish all given tasks. 

 
Figure 1 A visualization of the pipeline system which consists of 3 major pipelines. 

Experiment results 

The system proved successful in the automatic evaluation of proton treatment 
eligibility according to the model-based approach and predefined thresholds. 
The number of cases where proton therapy ranked higher as well as average 
outcomes for both modalities are summarised in Supplementary Table 2. 

 
Figure 2 Relative (to threshold of 15%) “complication profiles” after 12 and 6 months (left axis). Only compli-
cation predictions that were larger than 5% were included. Right axis for relative (to threshold of €80,000) 
ICER (=∆€/∆QALY). 
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In Figure 2, the individual results are shown for toxicity and cost-effectiveness, 
relative to the defined thresholds.  

On the dosimetric level, proton therapy significantly lowered doses to the 
OARs, except for the superior PCM. For the latter, only the proton plans stayed 
below the thresholds for 2 cases, whereas these were 4, 5 or 12 when considering 
the supraglottis area, ipsi- or contralateral glands, respectively. 

On the toxicity level, proton therapy significantly reduced all toxicities. On 
average, the probability of swallowing dysfunction 6 months after treatment was 
reduced from 37% to 28% and from 23% to 18% at 12 months. The probability 
of xerostomia was reduced for all 23 cases after treatment: from 48% to 25% at 6 
months and from 46% to 23% at 12 months. With combined toxicity thresholds, 
protons outperformed photons for 23 cases at 6 months and 21 cases at 12 
months.  
 
On the cost-effectiveness level, we observed an increase in QALY for all the 
patients in their proton therapy plans, although it was also significantly more 
expensive. Using the nationally accepted criterion of €80.000 per QALY gained, 
proton therapy was found to be cost-effective for 8 of the 23 patients.  

Discussion 

We successfully developed and evaluated the PRODECIS prototype to comply 
with the Dutch model and added the option to evaluate cost-effectiveness. The 
study shows that, given nationally accepted guidelines for 15% reduction of a 
complication profile including swallowing dysfunction and xerostomia, all pa-
tients would benefit from proton therapy after 6 months and 91% after 12 
months, while 35% would be considered cost-effective at a threshold of 80,000€ 
per gained QALY. Although a CDSS was previously applied [34,35], we have not 
found any application that could make quantitative decision-making about pho-
ton vs. proton therapy at three levels. 

A key characteristic of the system is its parallel pipeline structure, which al-
lows easy extension by reusing the modular code. Another important feature is 
the dynamic selection of models based on the tumour type. Such flexibility ena-
bles the system to rapidly adapt to different user requests and incorporate new 
insights from the oncology society. Provided the availability of relevant predic-
tion models, future studies could perform systematic experiments to search for 
an optimal outcome among multiple treatment options at any anatomical site. 
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The third system feature is its use of the Markov model. It consists of health 
stages in terms of toxicity RTOG grade and translates toxicity probabilities into 
transitions between health stages (Supplementary Fig. 2). Through the transi-
tion of a patient’s health state after treatment, the model estimates the costs and 
effects of the treatment. An adapted version, referred to as micro-simulation, 
was developed to predict survival of patients with non-small-cell lung cancer 
[36]. A recently published study [37] shows the same approach to estimate cost-
effectiveness of the use of spacers when treating prostate cancer.  

Multiple advantages of using the PRODECIS CDSS are foreseen. First, it 
provides the opportunity for a clinician to make a model-based decision follow-
ing the Dutch guidelines. Second, it allows clinics to quantitatively prioritise the 
limited treatment slots and allocate them to the patients expected to gain the 
most from proton therapy [17,38]. Third, it quantifies clinical evidence for 
health insurance policy development. Furthermore, it can help in evaluating the 
cost-effectiveness of deploying a new technology. A final point to note is that 
consent for data-exchange to the proposed online system can readily be asked 
from the patient who is being considered for proton therapy and has a direct 
benefit of the re-use of its data. 

However, these advantages will only be achieved when the following con-
cerns are addressed sufficiently. As the system is still in an early stage, extension 
to a fully operational system offering user management is required to account 
for audit trails, for instance. As with the MISTIR platform, security measures for 
encrypted data transfer are to be provided [14]. Furthermore, the system offers a 
single-shot evaluation and currently lacks proper case management to retrieve 
previous comparison outcomes for re-evaluation. 

Similarly to the ReCompare system [15], the PRODECIS platform is targeted 
towards referring photon therapy centres, accepting previously calculated pho-
ton treatment plans for comparisons. However, PRODECIS also uses user-
provided proton plans, whereas ReCompare uses the proton plan generated by 
the operating proton therapy centre (PTC) itself. Such service can optionally be 
provided by the staff backing PRODECIS, but as the comparison is performed 
automatically using standardised models and thresholds an independent evalua-
tion of plan quality and prediction of complication rates is offered to other 
PTC’s as well. 

A prerequisite for the automatic numerical evaluation of PRODECIS is that 
the uploaded treatment plans should adhere to strict protocols, specifying con-
tours per tumour group. The use of so-called “umbrella protocols” and interna-
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tional naming convention guidelines will facilitate data exchange in a reusable 
fashion [39-42]. Although quality assurance methods are implemented, such as 
contour name mapping, major violation of the protocol will prohibit evaluation, 
requiring corrections by the user. 

It is foreseen that with current efforts from both community as well as indus-
try, instead of calculations based on user-provided treatment plans, automatic 
plan generation could be applied [43,44]. As an alternative to automatic plan-
ning, the estimation of DVH parameters might be reliable and fast, given a suf-
ficiently large historical database of patients with the best planning (as in the 
study of photon therapy plan optimisation [45]). Patient-selection using a com-
prehensive matching mechanism based on essential patient characteristics in-
cluding clinical aspects, tumour location and organ distribution is considered to 
be incorporated into the PRODECIS system as shown in Supplementary Fig. 3. 
This will greatly improve the workflow, avoiding the resource-intensive bottle-
neck of double treatment planning.  

A critical factor of the model-based selection method is the quality of the 
treatment plans under evaluation. Therefore, we expect realistic clinical-grade 
(thus not “beyond-state-of-the-art”) treatment plans that would be adminis-
tered to the patient in real practice. This means planning protocols need to be 
up-to-date and in line with the technical possibilities of the treatment options. 
As for the experiment, the published proton plans for 25 HNC patients are not 
considered current standard anymore. We have now produced robust treatment 
plans (unpublished data), which produce not dramatically different but more 
realistic proton plans, where in some cases the differences are clinically relevant. 
To further evaluate the system, we will experiment with external datasets from 
different centres using different treatment techniques. 

Furthermore, in the current prototype, the system only considered those tox-
icities for which reliable NTCP-models were available and that connected to the 
cost-effectiveness model. Additional models can easily be added including more 
OARs such as oral cavity, brainstem, or area postrema to predict acute and late 
radiation-induced toxicities, which may likely be reduced by proton therapy as 
well and could mean that the cost-effectiveness of protons will be underestimat-
ed. For instance, the first comparison of IMRT versus IMPT among oropharyn-
geal cancer patients treated with chemo-radiation in the MD-Anderson Cancer 
centre [46] showed a significant decrease of required tube feeding during the 
course of radiation when IMPT was used. In this regard, direct measurement of 
QALY’s in prospective data registration programs is needed to obtain better 
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insight into the cost-effectiveness of protons. In addition, to maximise system 
utility, it is highly desirable to use toxicity models that consider multiple stages. 
E.g. a reduction of grade 4-5 toxicities is of utmost clinical benefit, but the num-
ber of patients is too low to train such a model reliably, which requires interna-
tional data pooling or rather distributed learning systems [47-49]. 

The HNC Markov model adopted in this system depended on acceptable 
costs, which vary from country to country and even from hospital to hospital. It 
also depended on toxicity estimation models that were regressed without pa-
tients’ biomedical data. Furthermore, previous interventions such as surgery or 
chemotherapy were not included in the system, which will bias the complication 
predictions. Therefore, service at this level is a proof of principle and not con-
clusive. 

The next step will be to include genetic biomarkers of radio-sensitivity to fur-
ther improve the prediction of late toxicities [50,51]. We aim to continuously 
update the system with additional models that apply to other diseases and are 
scalable to other countries. Finally, patient-specific data such as molecular in-
formation, patient-reported outcomes and personal preference should be incor-
porated to truly improve the level of personalisation in decision support systems. 
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Supplementary Material 

Table A1 Safety margin as a function of the setup error and the peak-to-peak breathing amplitude (in mm). 
Setup error Breathing amplitude Safety margin 

5 0 5 

5 5 6 

5 10 7 

5 20 8 

 

 

 
Supplementary Figure 1 The decision tree for all model-based indications to get proton therapy reimburse-
ment. 
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Supplementary Figure 2 A cost effectiveness model in terms of Markov Cycle Tree [1]. “Toxicity that oc-
curred in the first 6 months was (partly) reversible. Therefore, patients are allowed to move between health 
states a, b, c, and d 6 months after radiation therapy. Thereafter, toxicity was assumed to be irreversible. 

*Toxicity was defined according to the presence of toxicities grade 2 or higher (RTOG).” 

Reprinted from Green Journal, Vol. 85, Ramaekers BL et al., Protons in head-and-neck cancer: bridging the 
gap of evidence, pp. 1282, Copyright (2013), with permission from Elsevier. 

 

 
Supplementary Figure 3 A future perspective: incorporating matching mechanism into the PRODECIS 
system. 
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Supplementary Table 1  NTCP models and Cost-effectiveness estimation model [1] 

NTCP models * Coefficient Se 
Probability RTOG ≥grade 2 xerostomia 6 months after radiotherapy (N=354)   

Constant -2.852 0.313 
Mean dose to parotis ipsilateral 0.031 0.009 
Mean dose to parotis contralateral 0.036 0.010 

Probability RTOG ≥grade 2 xerostomia 12 months after radiotherapy (N=251)   
Constant -2.949 0.386 
Mean dose to parotis ipsilateral 0.025 0.011 
Mean dose to parotis contralateral 0.045 0.012 

Probability RTOG ≥grade 2 dysphagia 6 months after radiotherapy (N=354)   
Constant -6.094 0.925 
Mean dose to pharyngeal constrictor muscle superior 0.057 0.009 
Mean dose to supraglottic area 0.037 0.012 

Probability RTOG ≥grade 2 dysphagia 12 months after radiotherapy (N=230)   
Constant -6.343 1.186 
Mean dose to pharyngeal constrictor muscle superior 0.058 0.012 
Mean dose to supraglottic area 0.027 0.015 

Cost-effectiveness estimation Coefficient  
Cost estimation for IMRT   

Constant 35827€  
6 months after radiotherapy   

RTOG ≥grade 2 xerostomia and RTOG ≥grade 2 dysphagia 1777€  
RTOG ≥grade 2 xerostomia without RTOG ≥grade 2 dysphagia 24€  
RTOG ≥grade 2 dysphagia without RTOG ≥grade 2 xerostomia 1753€  

12 months after radiotherapy   
RTOG ≥grade 2 xerostomia and RTOG ≥grade 2 dysphagia 19418€  
RTOG ≥grade 2 xerostomia without RTOG ≥grade 2 dysphagia 299€  
RTOG ≥grade 2 dysphagia without RTOG ≥grade 2 xerostomia 19119€  

Cost estimation for IMPT   
Constant 46880€  

6 months after radiotherapy   
RTOG ≥grade 2 xerostomia and RTOG ≥grade 2 dysphagia 1777€  
RTOG ≥grade 2 xerostomia without RTOG ≥grade 2 dysphagia 24€  
RTOG ≥grade 2 dysphagia without RTOG ≥grade 2 xerostomia 1753€  

12 months after radiotherapy   
RTOG ≥grade 2 xerostomia and RTOG ≥grade 2 dysphagia 19418€  
RTOG ≥grade 2 xerostomia without RTOG ≥grade 2 dysphagia 299€  
RTOG ≥grade 2 dysphagia without RTOG ≥grade 2 xerostomia 19119€  

QALY estimation for both Coefficient  
Constant 6.79  
6 months after radiotherapy   

RTOG ≥grade 2 xerostomia and RTOG ≥grade 2 dysphagia -0.049  
RTOG ≥grade 2 xerostomia without RTOG ≥grade 2 dysphagia -0.022  
RTOG ≥grade 2 dysphagia without RTOG ≥grade 2 xerostomia -0.032  

12 months after radiotherapy   
RTOG ≥grade 2 xerostomia and RTOG ≥grade 2 dysphagia -0.767  
RTOG ≥grade 2 xerostomia without RTOG ≥grade 2 dysphagia -0.346  
RTOG ≥grade 2 dysphagia without RTOG ≥grade 2 xerostomia -0.497  

Abbreviations: Se = standard error, NTCP = normal tissue complication probability, IMRT = intensity-
modulated radiotherapy with photons, IMPT = intensity-modulated proton radiotherapy. 
* The multivariate normal distribution was constructed using Cholesky decompositions [2] 
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Supplementary Table 2 Comparison statistics on 23 HNC patients, showing the number of patients that were 
expected to benefit from proton therapy, based on the given thresholds. Furthermore, the average OAR mean 
doses and significances for differences between the groups are shown.  

 
Photon plans Proton plans H0 Compliance* 

Dose statistics 

Endpoints (Gy) Mean SD Mean SD P-value Cases (TH) 

Mean dose to supraglottis area 54.0 12.1 39.9 25.6 <0.001 4 (<50 Gy) 

Mean dose to superior PCM 62.2 3.6 61.1 5.1 0.465 2 (<50 Gy) 

Mean dose to ipsi-lat. parotid gland 47.1 11.0 30.1 9.5 <0.0001 5 (<26 Gy) 

Mean dose to contra-lat. parotid gland 35.8 9.6 20.9 6.3 <0.0001 12 (<26 Gy) 

Toxicity statistics 

Endpoints (%) Mean SD Mean SD P-value Cases (TH**) 

6 months after treatment 

Swallowing dysfunction 37.3 12.1 28.4 17.1 <0.001 13 (Δ>10%) 

Xerostomia 47.7 13.4 24.7 8.1 <0.0001 22 (Δ>10%) 

Combined †      23 (∆>15%) 

12 months after treatment 

Swallowing dysfunction 22.6 7.8 17.9 10.0 <0.001 1 (Δ>10%) 

Xerostomia 46.3 13.9 23.1 7.7 <0.0001 22 (Δ>10%) 

Combined †      21 (∆>15%) 

Cost-effectiveness statistics 

Endpoints Mean SD Mean SD P-value Cases (TH) 

Cost (€) 40970 1692 50874 2208 <0.0001  

QALY 6.51 0.06 6.62 0.06 <0.0001 
 ICER (∆€/∆QALY) ‡ Mean: 118546 SD: 76605  8 (<80000) 

Abbreviations: PCM: pharyngeal constrictor muscle, QALY: Quality-Adjusted Life Year, SD: standard devia-
tion, TH: thresholds. 

* the number of patient cases where only the proton plan was favourable given the threshold; 
** absolute reduction (photon – proton) in toxicity prediction (%)  
† only toxicity reductions exceeding 5% were summed up and should exceed 15% 
‡ Incremental Cost-Effectiveness Ratio: incremental costs divided by incremental QALYs.  
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Introduction 

This thesis shows the merger of two seemingly distinct topics: knowledge engi-
neering and proton therapy. However, in retrospect, the research shows in a logi-
cal transition that the application of proton therapy greatly depends on world-
wide knowledge previously gained and how new methods to transparently mine, 
learn and distribute that knowledge contribute to the realisation of cost-effective 
healthcare even when expensive technology such as proton therapy is considered. 

The central theme in this work is to investigate the differences between patients 
and to learn how to choose the best treatment on an individual basis, with the as-
sistance of multi-modal prediction models in clinical decision support systems. 

The specific aims for this thesis were 1) to attest the increased need for in-
formation exchange and knowledge extraction on an international level to aid 
clinical decision-making for improved individualized healthcare, 2) investigat-
ing supplemental evidence for the justification of giving more expensive proton 
therapy to those patients that are expected to benefit the most by means of in 
silico trials and finally 3) to show the realisation of the merger of the two re-
search areas with the implementation of a reimbursement eligibility decision aid 
for proton therapy.  

Challenges in oncology 

Controlling patient outcome 

One of the many challenges in oncology is to handle the great diversity in pa-
tients with different characteristics such as age, clinical history or concomitant 
treatments. On top of that, there is a huge heterogeneity in tumour types, de-
pending on genetic and micro-environmental circumstances, for instance, which 
influences the reaction to treatment [1]. Furthermore, not only the information 
that is available to classify patients is exploding due to advancing techniques in 
imaging and genomic sequencing, for instance, but also the options for treatment 
are ever increasing. This leaves the acting physician with a huge challenge to 
combine all this information and find the best treatment option. 

The discipline of systems and control theory teaches us that the best way to 
steer a complex system towards a desired output is by implementing an active 
feedback loop using direct measurement from the endpoint that needs to be 
modified. However, in the treatment process, there are also many intermediate 
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‘endpoints’ that need to be controlled such as a patient’s position and given 
dose. As shown in Figure 7, these are acting as cascaded loops that differ in 
speed of interaction. The inner loop is fast with for instance daily imaging be-
fore the treatment is given [2]. The outer loop uses a slower feedback, measur-
ing dose during treatment [3–6]. A change in the treatment is usually only after 
a few fractions unless major disturbances are experienced. 
 

 
Figure 7 Cascade control of individual treatment quality 

 
Analogous to this, to improve the outcome of cancer patients, we must measure 
and use patient outcome in an encompassing cascaded loop. However, collec-
tion of outcome data is a burden as it lacks standardisation and unfortunately is 
hampered by the increasingly competitive environment in which healthcare is 
operating nowadays [7–10].  

A recently published report by the National Audit Office showed the failure 
of the UK Department of Health and National Health Service (NHS) England to 
collect outcome data of cancer patients receiving chemotherapy through the 
Cancer Drugs Fund (CDF) [11,12]. The Fund realised the importance of collect-
ing outcome and toxicity data from the start but after having spent nearly 1 
billion pounds during 4.5 years, only an astonishing low number (7%) of the 
records had outcome summaries. 

Classical learning cycle 

The standard method to improve cancer care is through the generation of “Level 
I evidence” via randomised controlled trials. It is known, however, that general-
ly the number of cancer patients participating in trials is less than 5%, with some 
exceptions in specific trial programs [13–16]. Furthermore, the patients eligible 
for participation in trials are carefully selected for age, health performance score 
and previous disease. This decreases the chance considerably that a patient in 
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need of an optimal treatment fits the profile of the trial population that led to 
the discovery of this treatment. How can we then be certain about the efficacy of 
this treatment? 

Furthermore, with late side effects or clinical outcome as main endpoint, the 
turnaround time to generate new protocols from the results of clinical trials is in 
the order of five to ten years, or even more [17]. Given the rapid development of 
new treatment equipment and continuous biological discoveries the classical ap-
proach of evidence-based medicine should be considered insufficient to keep up.  

This is for instance the case with proton therapy, which is a cancer treatment 
modality that is in a very active development stage, currently. For instance, real-
time imaging of patient position and measurement of actual delivered dose, which 
is common in the photon therapy field, is now rapidly being introduced in the 
proton world. In past years, many technical improvements have been introduced 
and not all of them underwent a rigorous approval through clinical trials. One can 
think of the use of blocks, wedges and multi-leaf collimators instead of square 
fields. However, when the expected gain is unclear and costs are considerable, 
there is a strong need of an alternative method for proof finding [18,19].  

Exploring frontiers with Rapid Learning 

The general concept of Rapid Learning is to complement the evidence-based 
medicine approach for clinical decision-making with prediction modelling and 
decision support tooling in an iterative loop (Chapter 2, [20–22]). One could 
think of this approach as being a Deming “Plan-Do-Study-Act” (PDSA11) cycle 
where standing clinical practice is continuously updated with new insights lead-
ing to improved treatment processes with better outcomes. 

Deming introduced the PDSA cycle, also known as the Deming wheel, which 
offers a method for continuous improvement through small, iterative steps 
[23,24]. Originally targeted towards optimising quality in the manufacturing 
industry, the PDSA method can equally well be applied to other fields, such as 
improving quality and safety in healthcare [25,26]. 

Referring to the CDF program described above, it shows that the efforts un-
dertaken to improve access to cancer drugs are undermined by insufficient 
planning for data collection and doing documentation of data and observations. 

                                                           
11 The commonly known PDCA cycle (with check replacing study) is a Japanese interpretation of the princi-
ples taught by Deming in 1950, who considered it a ‘corruption’ of the original concept. 
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This leads to flaws in studying the results and subsequently limits options for 
action and subsequent improvement cycles. 

When treating patients, there are many variables that need to be taken into 
account, ranging from the time needed for treatment plan preparations, dose to 
the tumour and normal tissues, to overall treatment time, number of staff in-
volved and the costs of treatment, to name a few. From multi-objective optimi-
sation, e.g. in treatment planning systems, we know that multiple combinations 
of these variables in this multi-dimensional search space exist that are consid-
ered optimal: the Pareto Frontier [27–29]. On this frontier, there is no other 
combination of factors possible that result in a better treatment, is more cost-
effective, offers better patient satisfaction, etc. Given all available options and 
the limitations we are bound by, we need to strive for treatments that satisfy 
these conditions. Every new option that is added to the realm of cancer treat-
ment techniques will add another dimension to the problem space (or solution 
space for the optimists) and thus needs exploring new frontiers. 

To this end, Rapid Learning uses routinely collected clinical data, including 
historical populations, to predict clinical outcome of new patients and thus fa-
cilitate individualised decision-support. We could state that Rapid Learning is a 
way to empirically measure the coordinates of solutions in the multi-
dimensional cancer treatment space and the objective is to find the Pareto effec-
tive frontier for individual patients. When we realise that every patient adds 
unique physical and biological parameters and personal preferences, for in-
stance, it is clear that the problem space drastically expands (or rather explodes) 
and that it is impossible for anyone (even physicists) to find this solution him- 
or herself. 

This is where Rapid Learning includes the use of models that, given a set of 
input parameters, predict the outcomes of possible treatments. As indicated in 
Chapter 1, the models can be dose- and data-driven. In either way, much data is 
required to generate and validate these models, which underpins the importance 
of both registration of meaningful information before and along the treatment 
process, as well as capturing the crucial follow-up data.  

Hidden information 

The CDF example shows how important it is to have intermediate and end-
point measurements when you want to “close the loop” during an intervention. 
However, in oncology, it is not always easy to find this information. Although it 
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is common practice to use electronic medical records (EMR) in oncology, its use 
is primarily ‘operations’ oriented. The main function that vendors support is the 
management and documentation of the treatment process itself. By design, 
EMRs are not well suited for learning systems. They are mostly internally ori-
ented and reuse of the information is difficult, if not impossible without in-
house software development.  

In Chapter 3, we showed how the information from our own medical record 
(EMD) needed to be combined with additional information sources and soft-
ware components for extraction of missing or incorrect information. Although 
it took considerable time for complete implementation, it was relatively easy to 
realise because the EMD was an in-house development, which gave full access to 
the internal data formats and structure. Current EMRs do tend to improve in 
offering data reports. However, they are often limited in the freedom to collect, 
combine and report information outside the regular process patterns.  

For example, documentation from essential patient reported outcome 
measures (PROMs) is often not implemented in a standard, qualified manner 
[7–9,30]. Also, the information that was provided is typically unavailable in the 
regular interface and therefore the use of PROMs disturbs the workflow. Im-
plementation of electronic patient portals that offer flexibility and self-support 
by the institution is crucial to make the use of PROMs as learning material pos-
sible. Furthermore, there is an increased need to export treatment information 
to national registries. This ‘outer cascade’ type of information will help to set 
and improve field standards for generic treatment quality, such as waiting times 
or treatment costs. 

Frequent reporting of these data still proves to be a burden and direct elec-
tronic exchange is only possible after considerable investment in the develop-
ment of special software. Part of the problem is that certain information has to 
be provided, while the data are not available in the institution itself. This is typi-
cally true in oncology as there are many referring partners where patients origi-
nally are diagnosed and radiotherapy can be combined with surgery or chemo-
therapy. Due to the lack of a national electronic patient record, the provisioning 
of relevant information from the chain of medical interventions is therefore 
extremely difficult. 
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Opportunities in radiotherapy 

Data-driven healthcare 

With the high number of variables in the treatment of cancer and the need to be 
more precise while maintaining efficiency we need to be able to accurately pre-
dict treatment outcome and use that in daily clinical routine. Luckily, radiother-
apy is among the most data-driven disciplines in healthcare using many types of 
(digital) models to prepare the best personal treatment for its patients. Patients 
are digitised via CT, MR or PET imaging after which computer models of linear 
accelerators are used to balance the amount of the dose given to tumour and 
healthy tissue to strive for a possible cure without complications. During the 
treatment, repetitive images are captured to correct for misalignment of the 
patient and detect geometrical changes. Additionally, a technique was developed 
at MAASTRO clinic that measures the given dose to the patient and prevents 
over- or under dosage [3–6]. This offers the opportunity to study and minimise 
the differences between the intended (planned) and given (real) dose. 

Given the early adoption of EMRs and many treatment measurements to 
monitor outcome and control quality there is a wealth of clinical data to extract 
information from and use for data mining, providing outcome prediction models, 
for instance. However, as discussed above, this information is often incomplete. 

As shown in Chapter 3, it requires substantial effort to bring together the mul-
tiple sources of information in a data warehouse and provide methods to auto-
matically generate missing information from the collected data. However, it great-
ly stimulates structuring the data for reuse and improves quality as well as quanti-
ty, which show its importance in the benefit of data collection in clinical trials. 

Breaking down barriers with CAT 

As previously indicated, data-driven prediction 
modelling demands a large amount of data and as 
the patient population is very heterogeneous, the 
required data should be too. Furthermore, a model 
should not be validated using the same data as was 
used for the modelling itself. This has given rise to 
the need of extramural data collections.  

When exchanging patient-related data, there 
are many barriers to break down. Unfortunately, 

Barriers to share 

… the problem is not 
really technical … 

Rather, the problems  
are ethical, political,  
and administrative  

 
Lancet Oncol, 2011 

“ 
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overly cautious interpretation of European Directives on Good Clinical Practice 
[31] and Personal Data [32] has had counterproductive effects in increasing cost 
and subsequent reduction of clinical trials and instalment of national cancer 
registries and the information exchange of this information [33–35]. 

In 2005, we started the Computer Aided Theragnostic12 (CAT) research pro-
ject (Chapter 3, 4) to address the clinical information exchange issue and facili-
tate data collection and knowledge transfer by building an international data-
sharing infrastructure. Through daily synchronisation of the various clinical 
databases the data is aggregated into a de-identified, disease-oriented research 
environment. Via a web-based research portal, data collections can be retrieved 
for analysis in a common data model. In Chapter 4, we showed a prototype for a 
special implementation of a CAT system for international collaboration. This 
system was built using free and open-source software and enabled data ex-
change of de-identified medical record data and accompanying image datasets. 

The EuroCAT project (eurocat.info), which ran from 2010 to 2015 among 
five institutions in Belgium, Germany and the Netherlands, exploited the CAT 
principle and built an international, multi-lingual data-sharing network. The 
project proved successful in automatic data-extraction of predictive parameters 
for complication prediction models, among others. The EuroCAT project has 
laid the groundwork for a global infrastructure and subsequent CAT projects 
that leverage local medical databases with information collected from daily clin-
ical routine and share that data in a secure way.  

In time, it will be impossible to continue to collect trial or modelling data in 
a centralised manner as the digital information that belongs to a patient treat-
ment expands drastically with new ‘omics’ datasets, for instance. Instead, this 
requires centres to install semantic interoperable connectors to clinical data-
bases, which enables a global federated learning network such that the data does 
not leave the hospital but lightweight and non-identifying learning applications 
do have access to those collections. The challenge here is to have the learning 
models converge, while operating only on data within the silos behind hospital 
walls. By continuous exchange of machine-learning regression factors to a cen-
tral server, a consensus model can be derived without violating the patient’s 
privacy [36,37].  

                                                           
12 “Theragnostics” is an aggregation of therapeutics and diagnostics 

http://www.eurocat.info/
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Model-based decisions 

In 2006, MAASTRO CLINIC was one of the initiators of the first proposal to 
offer proton therapy to patients in the Netherlands. Although the benefit of the 
physical advances of using a proton beam when compared to a photon beam is 
acknowledged for some indications, such as paediatrics, intraocular, chordoma 
and chondrosarcoma, evidence hereof is still considered insufficient for many 
other cancer types. To investigate the possible benefit for subgroups of patients, 
we initiated the Radiation Oncology Collaborative Comparison (ROCOCO) 
group in 2007. This international research group consists of multiple investiga-
tors renowned for their expertise in disease-specific treatment options, radiobi-
ology, physics, treatment planning, etc. in the photon and particle therapy field. 
We set up a virtual enterprise type of trial infrastructure, MISTIR, as described 
in Chapter 5, which allows secured data transfer and collaboration between 
multiple international research groups. 

We applied the principle of in silico simulations of several clinical trials to 
compare multiple treatment modalities for different cancer patient groups13. 
This method offers the benefit that the same patient is ‘treated’ several times and 
acts as its own control in the comparison, which reduces the necessary number 
of cases for the trial. We investigated differences between various treatment 
modalities and patient groups, for example between three-dimensional conven-
tional and intensity-modulated photon therapy and passive-scatter proton ther-
apy for long cancer, as shown in Chapter 6. We found that some patient sub-
groups are likely to benefit from particle therapy but others not. 

The principle of performing simulations to test the introduction of a new 
technology fits the Rapid Learning PDSA approach described earlier. First, the 
new treatment technique is simulated and multi-factorial complication models 
predict the expected outcome. Based on national consensus [38], a selection 
criterion is defined whether a patient is expected to sufficiently benefit from the 
new technique (e.g. proton therapy). If so, this modality is used to treat the pa-
tient, while the related information is entered into a national database to enable 
prospective cohort studies. Such a Rapid Learning or model-based approach is 
unique in the field of radiotherapy and offers the opportunity to generate clini-
cal evidence of new treatments with rapidly changing techniques [39–41]. 

                                                           
13 See www.mistir.info/activities for an overview of past and current trials 

http://www.mistir.info/activities
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Based on this principle, we generated a unique model-based proton therapy 
decision support system (PRODECIS), as shown in Chapter 7. This online deci-
sion aid compares photon and proton therapy using components of the MISTIR 
framework and uses validated prediction models from PredictCancer 
(predictcancer.org) to estimate the complication with both modalities. Addi-
tionally, we implemented a model that indicates whether the more expensive 
proton therapy is cost-effective, taking a nationally accepted price per life year 
gained with good quality into account [42]. Although initially the model-based 
approach is implemented for proton therapy in the Netherlands, it is applicable 
to other treatment modalities as well [43]. It is expected that this method will be 
used more frequently for healthcare environments with rapidly advancing tech-
nical solutions. 

Conclusions and future directions 

Standardising medical data exchange 

Knowledge is power. Unfortunately, we sometimes lack the power to build that 
knowledge. In a striking report to the US Congress, called “Report on Health 
Information Blocking”, the Office of the National Coordinator for Health In-
formation Technology (ONC) concluded that there is evidence of active block-
ing of medical information exchange by EMR vendors [44]. This conclusion is 
harsh and probably not only to be held against the vendors. As mentioned, dis-
turbing interpretation of European Directives has caused considerable barriers 
to share crucial clinical information as well. 

Fortunately, as we have shown, by combining Medical Informatics and 
Knowledge Engineering we are able to offer a 
powerful and proven methods to break these bar-
riers down and enable exchange of medical data 
through active international collaboration to indi-
vidualise healthcare. This form of translational 
informatics is highly needed, as there is still a huge 
demand for tooling and regulations to facilitate 
global data-exchange. Although the discipline of 
data mining needs a heterogeneous data pool, it 
cannot compensate all of the data quality issues 
simply by outnumbering. To this end, harmonisa-

Barriers to share 

… this report suggests that 
some persons and entities 

are interfering with the 
exchange or use of elec-

tronic health information 
… 

ONC, April 2015 

“ 

http://predictcancer.org/
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tion of data-standards is required. 
We therefore actively support the concept of Umbrella protocols with the 

publication of open-access protocols on CancerData [45–47]. The primary ob-
jective of these protocols is to standardise data collection [48]. Other standards 
to specifically equalise naming conventions in radiation oncology terms have 
been proposed as well [49,50]. However, to date, no treatment planning system 
adheres to these conventions. 

Although international standards are available, such as ICD, LOINC, NCI 
Thesaurus and SNOMED Clinical Terms [51–54], their incorporation into 
EMRs is still limited [55]. We have shown pioneering work of our Clinical Data 
Science research group in which medical data was extracted from two EMRs 
and converted the terminology from Dutch and Italian into common SNOMED 
CT terms (Chapter 4) to enable distributed learning for individualised medi-
cine14. The available declarations linking specific common terminology, con-
cepts and relations for radiotherapy are often limited, in these global standards. 

Semantic interoperability in ongology 

Therefore, a dedicated Radiation Oncology Ontology (ROO) has been devel-
oped, which is an ontology to publish Linked Data for radiotherapy. The ROO 
reusing as much entities as possible from existing ontologies, but adds what is 
lacking for radiation oncology (cancerdata.org/roo-information). The ROO is 
published online as an open-access resource to stimulate reuse and standardisa-
tion in the field. 

By translation of patient data into globally unique concepts, properties and 
relations, it is possible to create a fully de-identified semantic interoperable rep-
resentation of this information. This means that computer programs can inde-
pendently interpret this data and process it for data mining purposes. One pro-
ject in which we participate as clinical partner that uses such technology is the 
Semantic DICOM (SeDI) project (semantic-dicom.org), which develops a web-
based, real-time queryable image archive [56,57]. It uses a Resource Description 
Framework (RDF) model to store entity-relationships of image data in triples of 
subject–predicate–object expressions. 

This enables the revolutionary concept of Linked (Open) Data (lod2.eu), 
which will change the Internet as we currently know it from collections of pub-
lications into a web of knowledge. As an example, DBpedia (dbpedia.org) uses 
                                                           
14 You can find a video showing the principles here: youtu.be/ZDJFOxpwqEA 

http://www.cancerdata.org/roo-information
http://semantic-dicom.org/
http://lod2.eu/
http://wiki.dbpedia.org/
https://youtu.be/ZDJFOxpwqEA
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this concept to enable a faceted search for expressions such as “Give me all Ital-
ian musicians from the 18th century”. Such an approach translates into an on-
cology research domain as a question “Give me 100 female patients with a pros-
tate tumour” would actually be answered with no results, as the system knows 
that a female person does not have a prostate, and not return incorrect infor-
mation based on the keywords. Knowledge is power… 

For instance, after playing chess for years, IBM is now putting supercompu-
ting to good use with the Watson project. Using massive computer power, natu-
ral language processing, linked data, ‘deep learning’ techniques and the clinical 
expertise of several cancer institutes, the Watson Health project is building cog-
nitive artificial intelligence solutions for clinical use against cancer [58–61]. 

Stimulating reuse with open-access data 

The success of rapid learning will greatly depend on the quantity and quality, and 
public availability of published healthcare data. Semantic web technology can 
offer solutions to bring high quantities of EMR data online in a secure and priva-
cy-protecting manner [62–64]. Next to that, publication of curated, well-
documented datasets is important as well. This is realised, among others, by offer-
ing research datasets that were used for publications in dedicated data-publishing 
repositories. Something that is compulsory in the genomic research area. 

To this end, we have introduced the open-access CancerData biomedical data 
repository, which offers full datasets (e.g. in DICOM RT format) as well as sup-
plemental data of accompanying publications. Furthermore, we introduced per-
sistent identifiers using the Digital Object Identifier (DOI) coding system for the 
collected datasets. Referencing of individual DICOM objects using unique object 
identifiers (OID) is currently not supported, although a MAASTRO specific OID 
is assigned to every DICOM file, using a publicly registered IANA root id. 

The allocation of DOI’s allows researchers to easily cite the use of and allo-
cate credit for the data, which stimulates scientific reuse and should result in a 
fairer assessment of academic performance [65,66]. A more fine-grained form of 
semantic-interoperable publishing of data is by means of nano-publications that 
use richly annotated RDF concepts and should lead to reduction of inconsisten-
cy, ambiguity and redundancy of data [67–70]. 
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Changing clinical decisions  

Rapid Learning is changing clinical decisions; by process and consequently by 
content, e.g. in the way they are made, as well as for the factual decisions them-
selves. The amount of information that is available nowadays and the way it is 
presented in the daily clinical workflow is getting beyond comprehension [21]. 
For instance, genomics or the imaging counterpart of Radiomics is generating 
huge amounts of raw data, which are impossible to interpret without tooling that 
converts this into clinical reasoning. Furthermore, it is known that it is impossi-
ble to keep up with recent literature and in the meantime the lifetime of system-
atic reviews is about 5.5 years, which likely means that derived clinical guidelines 
and protocols do not keep in pace with rapid technological changes [71,72]. 

The knowledge-based approach that was described here can support in solv-
ing this issue. Data-mining applications can process the large amounts of bio-
medical information and learn complication prediction models that are increas-
ingly suited to offer personalised outcome predictions. This will subsequently 
stimulate shared decision making with well-informed patients [73]. 

One example hereof is the prototype of Treatment Choice 
(treatmentchoice.org), which is a user-friendly and interactive decision aid tool 
that helps lung cancer patients with the choice between chemotherapy and radi-
otherapy [74,75]. Not only is this a valuable service for patients, in a more so-
phisticated version this would be invaluable for physicians as well for the use in 
multi-disciplinary boards where there are similar choices to be made. Providing 
multimodality, multifactorial decision aids that quickly process lab reports, ac-
tual used medications and a full treatment history would ease physicians of a 
burden, tremendously. Unfortunately, fully clinically applicable decision sup-
port systems are not current practice yet. Large-scale programmes such as the 
Watson Health project will hopefully soon deliver. 

The efficiency paradox 

The field of knowledge engineering in oncology is relatively new and it has the 
ability to offer real solutions to facilitate model-based decision-making. This has 
the potential to improve the quality of treatments. However, the quest for effec-
tive, yet efficient therapy finds itself in a paradox where the optimal process is 
only found by an increasing effort to measure this process and its outcome. 

Great care should be taken when introducing new medical informatics tech-
nology into a busy clinical environment [76]. The treatment process is under 

http://www.treatmentchoice.org/
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constant pressure with the increasing need of electronic registration and exter-
nal monitoring of process efficiency. For instance, the introduction of decision-
support systems or information systems to stimulate incorporation of patient 
preferences into clinical practice needs proper facilitation for both patients as 
well as the medical staff. 

With this rapidly increasing amount of information that needs to be generat-
ed as well as processed by professionals, a disturbing mismatch can occur be-
tween privacy management and efficient clinical use [77]. Health informatics 
vendors should better focus on user-centred design principles and human fac-
tors theory in their user interfaces (e.g. ISO 9241-210) and use well-structured 
data storage definitions for efficient reuse [78–80]. 

Conclusions 

Access to ample quantities of data while having good quality is a huge challenge, 
especially in healthcare. Many centres lack resources or do not focus to archive 
data for reuse and research. However, it should be manifest that it is essential to 
collectively invest in secure but easy access to good quality medical data. It is the 
author’s opinion that there is an obligation of the radiotherapy (research) com-
munity to share the information, which is mainly gathered under public-funded 
projects, for further investigation by colleagues and subsequent feedback to 
society through free open-access data repositories and open-source tools, such 
as CancerData or PredictCancer. 

Clinical decision-making by in silico comparison of expected dose levels and 
subsequent toxicities, using multifactorial prediction models is introduced in 
the Netherlands for proton therapy. We added a third layer to differentiate be-
tween clinical and cost-effectiveness. It is expected that this approach will be 
considered for other rapidly advancing technical treatment options as well. It is 
a sensible way to choose the right treatment for the right patient, keeping a na-
tional or even global healthcare budget into account. Next, it is essential to in-
clude patient preferences for further improvement of the method. 

The discipline of Clinical Data Science has many challenges to conquer but 
also a vast arsenal of solutions to offer for the cause of individualising 
healthcare. The Rapid Learning approach will provide more and faster feedback 
from healthcare quality improvement interventions. It is crucial for the valida-
tion of this approach to continuously capture the data that is used and generated 
while looping through a PDSA process as depicted in Figure 8.  
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Figure 8 Rapid Learning PDSA cycle to continuously improve model-based radiotherapy 
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Relevance of this work 

The research activities that are presented in this dissertation primarily concen-
trate on two intertwined topics: 1) to investigate the need and possible solutions 
for international research data infrastructures to collaboratively capture, process 
and share patient information ranging from every day clinical data records to 
highly curated and enriched clinical trial databases. And 2) to investigate meth-
ods of application of data-driven prediction models to improve the individual-
ised prescription of cancer therapy options, in particular when considering cost-
ly treatment modalities such as charged particle therapy. 

Both areas of research are cornerstones of the concept of Rapid-Learning 
Healthcare (RLHC), as introduced in Chapter 2 and contribute to much needed 
solutions to bring research findings into clinical practice more rapidly. Fur-
thermore, with the current economic healthcare climate we are in and the aging 
population, we face challenging times where the request for clinical effectiveness 
increasingly becomes a quest for cost-effectiveness. The application of the 
RLHC framework helps to address this and contributes to a better healthcare 
system in three ways: 

◆ To clinicians new tooling is provided to take decisions based on larger 
amounts of patient-specific clinical, biological and social information. 
This enables them to choose for more personalised treatment options, 
while keeping the scarce resources and limited healthcare budgets into 
account. 

◆ For patients there is the benefit of large quantities of historical datasets 
that are connected into a globe-spanning learning system, which facili-
tates the matching of their individual disease profiles to promising new 
treatments or clinical trials. 

◆ Furthermore, due to consistent documentation of new complication pre-
diction models, treatment protocols and patient outcomes, healthcare 
managers and policymakers can constantly be informed with up-to-date, 
high-quality data of the treatments options and their results. This helps to 
improve the targeting of healthcare budgets and investments to enable the 
right treatments for the right patients.  

Although, RLHC was introduced around five years ago, we still experience little 
of it in daily clinical practice. Unfortunately, it is not unusual in healthcare to 
take more than ten years for innovative ideas to translate into clinical practice. 
The research as described in this dissertation, however, assists in realising 
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RLHC by offering several pioneering concepts and components [1] that can be 
put it into use through individual implementation or via commercialisation. 

Dissemination and utilisation 

Research data infrastructures 

As described in Chapter 4, we created a unique data exchange platform to share 
information from electronic patient records and full image datasets in a secure 
de-identified manner between international hospitals. The system was built with 
open-source and freely available software and explained in detail to allow for 
similar initiatives to be undertaken. Such a one-to-one solution is very valuable 
for initial, small-scale investigations, however a wider scope is warranted. The 
large amount and diversity of clinical data that is needed to keep answering 
increasingly complex questions is demanding the combination of many more 
institutions to share their information from locked-away data silos. 

One such a multicentric research data infrastructure is the BioMedical Imag-
ing Archive (BMIA, bmia.nl), which we set up when leading the medical imag-
ing work package in the Translational Research IT (TraIT) project of the Center 
for Translational Molecular Medicine (CTMM, now part of the Lygature foun-
dation). BMIA is a centralised national archive based on the open-source Na-
tional Biomedical Imaging Archive (NBIA) software offered by the NCI’s Na-
tional Cancer Informatics Program. The platform offers the sustained storage of 
previously collected research data or from new multicentric clinical trials, for 
instance. CTMM is offering the BMIA service as part of TraIT’s sustainable 
infrastructure to the Dutch medical community in a ‘freemium’ manner allow-
ing small projects to use the services for free. 

The MISTIR (mistir.info) research platform for multicentric in silico trials 
(Chapter 5), which was created with open-source software as well, was specifi-
cally set up to run studies that compare current state-of-the-art photon therapy 
to promising charged particle therapies. The Radiation Oncology Collaborative 
Comparison (ROCOCO) consortium is running multiple simulated clinical 
trials that require the exchange of de-identified clinical cases in a safe and effi-
cient manner. Although the system and trial data are not publicly available via 
MISTIR, we are preparing the datasets to be released via the CancerData portal. 

The CancerData portal (cancerdata.org) is an open, online platform that of-
fers permanent public access to supplementary datasets of publications in the 

http://www.bmia.nl/
http://www.mistir.info/
http://www.cancerdata.org)/
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field of radiation oncology [2]. Various data formats are offered, ranging from 
full DICOM (RT) datasets via a locally installed NBIA repository, to documents, 
spreadsheets and graphs. CancerData also offers several standardised research 
protocols, including material transfer agreements, scoring of side effects, quality 
of life questionnaires and patient information sheets in multiple languages, 
among others. By collectively using these standardised data collection protocols, 
the data quality is significantly improved and it is much easier to gain new in-
sights and learn prediction models from pooled multiple databases. Sharing that 
information with other institutions enables them to continue with subsequent 
research and to use that information to verify or improve previous findings or 
use the data to verify their own prediction models, for instance. 

Unlocking this potential knowledge by reusing the medical records stored 
within hospital walls via public repositories is a huge benefit to the oncology 
community. However, sharing sensitive patient data is a big challenge as per-
sonal information needs to be removed from the data while maintaining the 
value within the records to still be useful. While this can be established with 
proven open-source tooling, it is undoable in the long run to replicate all rele-
vant clinical data into research archives (may they be public or not). Not only 
because the data generated before and during a treatment is rapidly expanding, 
but also because we are able to find important information hidden within cur-
rently –mistakenly interpreted– irrelevant day-to-day clinical data.  

That is where the work as described in Chapters 3, 4 and §8.3 comes in. This 
research, which was performed in the euregional EuroCAT and many subse-
quent international projects, has led to a worldwide medical infrastructure with 
over 20 nodes, which enables a federated learning network in which medical 
data can be processed in a privacy-preserving way to study disease and patient 
characteristics in relation to treatment options and patient outcomes. Each in-
stitution in the network becomes a node that has dedicated software installed, 
which translates the clinical patient data into anonymous codes and statistical 
information. This unique, powerful data liberation technique enables the pool-
ing of many global datasets to increase prediction power and allow independent 
validation of discovered relations. The federated learning network methodology 
and various software components that have been developed during the research 
are co-developed with Siemens, Varian Medical Systems, Philips and multiple 
SME showcasing the intense interest also from commercial entities in this ap-
proach.  
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Decision support 

As described in Chapter 7, we developed a prototype for a proton decision sup-
port system (PRODECIS, prodecis.nl), based on the data and experience from 
the ROCOCO trials. The model-based approach that has been introduced in the 
Netherlands for proton therapy of lung, head-and-neck, prostate and breast 
cancer requires Dutch proton therapy centres to show an estimated benefit of 
proton therapy before treatments are being reimbursed. This estimation is given 
by comparing the prediction of complications that can occur after applying 
photon- or proton-based radiotherapy. Only when the expected benefit is ex-
ceeding a nationally defined threshold, the centre will be reimbursed. The sys-
tem has been licensed to ptTheragnostic, which is a spin-out of MAASTRO 
CLINIC. Initially, it is being developed for the European market but is expected 
to be available worldwide in the coming year. 

The model-based approach for proton therapy is a unique method that was 
developed in the last couple of years. It is based on clinical prediction models, 
however, which are not new at all, although clinical application is still limited. To 
stimulate the research, development and actual use of decision support systems, 
we publish prediction models online on PredictCancer (predictcancer.org). For 
the PRODECIS system, we used one such a published head-and-neck complica-
tion prediction model that includes a cost-effectiveness model comparing pho-
ton and proton therapy. 

Open Data, Open Knowledge 

As indicated previously, we actively use and support the open-source or open-
access philosophy. In general, we adhere as much as possible to the “open 
knowledge” principles given by the Open Knowledge Foundation (OKFN, 
okfn.org): 

“‘Open knowledge’ is any content, information or data that people are free 
to use, re-use and redistribute — without any legal, technological or social 
restriction.” 

Therefore, the data that are the basis of derived knowledge should be made 
available for reuse whenever possible. Or as given by the OKFN: 

“Everyone should have access to publicly-funded research in all areas, in-
cluding the latest science, medicine, and culture — both scholarly papers 

http://www.prodecis.nl/
http://www.predictcancer.org/
https://okfn.org/
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and research data. Essential information such as the results of medical tri-
als, successful or otherwise, should be openly available to all.” 

Doing so will 1) enable transparency such that any individual is granted insight 
in the information and is given a means to check previous findings, for instance, 
2) release social and possibly commercial value, which is exactly the intension of 
‘valorisation’ and 3) stimulate participation and engagement by other research-
ers, patients and policy makers, for instance.  

Another data-sharing stimulus focussed on internationally supported data 
stewardship, has been proposed by the Dutch Techcentre for Life Sciences 
(DTL) via the “FAIR Data” principles [3], in which data are:  

◆ “Findable: easy to find by both humans and computer systems and based 
on mandatory description of the metadata that allow the discovery of in-
teresting datasets,  

◆ Accessible: stored for long term such that they can be easily accessed 
and/or downloaded with well-defined license and access conditions 
(Open Access when possible), whether at the level of metadata, or at the 
level of the actual data content,  

◆ Interoperable: ready to be combined with other datasets by humans as 
well as computer systems and 

◆ Reusable: ready to be used for future research and to be processed further 
using computational methods.” 

To this end, the data should be open both legally, that is under a license that 
permits free access, reuse, modification and redistribution of the data, and tech-
nically, being easy to access the complete datasets in ‘bulk’ and machine-
readable, e.g. as ‘linked data’. Adhering to these principles, we offer the three 
basic components of our research activities to the public: 

◆ Publications are published open access whenever possible. When the 
publication is copyrighted by a journal, it is often possible to offer a Final 
Author Version (the authors' accepted version of their manuscript), refer-
ring to the published version. 

◆ Prediction models are freely accessible on PredictCancer 
(predictcancer.org). It is also possible for external parties to submit their 
models to the site for publication. 

◆ Data that were derived from our research are published on CancerData 
(cancerdata.org). To offer the material in a machine-readable manner and 

http://www.predictcancer.org/
http://www.cancerdata.org/
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in the meantime boost the online presence of the publications and their da-
tasets, we generate persistent links to the datasets via the Document Object 
Identifier (DOI) mechanism. To further improve the level of visibility of 
the research and its data, we have CancerData being harvested for content 
by OpenDOAR, BioSharing and Re3Data indexing sites, among others. 

Such open repositories provide a means to directly show appreciation for other 
peoples’ work (e.g. by liking or ranking), which is a popular, contemporary so-
cial-network habit and a direct incentive instead of the slow-paced impact-
factor-driven academic reward system.  

We will continue working on both the future-proof, global federated learn-
ing network that will handle big data research across large disparate medical 
databases as well as centralised linked data repositories with open access to the 
outcome from that research.  
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Summary 

Radiation oncology is in trouble. In fact, healthcare in general is. The spending 
on healthcare is rapidly rising, leading to a non-sustainable situation [1]. An 
aging population can partly explain the increasing costs, but overtreatment 
plays a large role as well [2]. This particularly happens due to defensive 
healthcare [3]. On the other hand, overtreatment also occurs due to the longevi-
ty of clinical protocols, which can cause inefficiency, as does the technology-
push from healthcare industry. 

One of the options to reduce the costs is to apply cost-effectiveness analyses 
or Healthcare Technology Assessments to inform policy and decision makers 
about the rightful use of (new) technology. 

To this end, the development of personalized decision support systems was 
investigated, including cost-effectiveness in the field of proton therapy. The 
following hypotheses were addressed and affirmed: 

◆ Rapid Learning Healthcare (RLHC) can improve clinical research and de-
cision-making. 

◆ Advances in Healthcare Information Technology (HIT) enable interna-
tional data sharing while preserving patient privacy. 

◆ Combining in silico planning comparison studies with multifactorial pre-
diction models enables cost-effective application of limited, expensive re-
sources, as introduced for proton therapy. 

The basic concept of this thesis is the use of RLHC to complement evidence-
based medicine with prediction modelling to provide clinical decision support 
for individualised cancer care (Chapter 2). RLHC applies advanced HIT to ag-
gregate disparate clinical information sources into a data warehouse that pre-
sents a complete, integrated disease-oriented view of medical data for research 
purposes. This chapter presents a general overview of some of the techniques 
that were used in the following work. 

Chapter 3 demonstrates how institutions can benefit from this improved 
presentation of patient information to improve efficiency and quality of data 
collection for clinical trials. Furthermore, RLHC uses machine learning princi-
ples to mine the data for clinically relevant relations to build data-driven com-
plication prediction models. 

Large amounts of data are needed for the modelling and validation of these 
models, which is unavailable from single institutions. Furthermore, to increase 
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information heterogeneity, which improves the predictive value of models, and 
to allow for external validation it is imperative that foreign data is available. 

Chapter 4 presents the necessary data-sharing techniques that unlock the 
medical data silos in a privacy-preserving manner by installing ‘connectors’ inside 
the hospital’s network firewalls. Furthermore, by transforming the data into in-
ternationally standardised semantic interoperable data models, computer systems 
are able to translate data into knowledge. Furthermore, medical records in local 
languages are converted into international, unique codes. This means that the 
data can be reused in foreign countries with equal meaning and value, which al-
lows for federated or distributed learning of complication prediction models [4]. 

In advance of a federated network, which is very advanced but not common 
practice yet, the framework of MISTIR (mistir.info) uses a centralised research 
database for international collaborative in silico clinical trials (Chapter 5). The 
system offers a secure data-exchange platform with high-quality datasets and 
trial protocols for multiple in silico planning comparisons of different treatment 
modalities. Quality assurance measures and automated data extraction proce-
dures are applied for uniform analysis of the results. 

Chapter 6 presents a ROCOCO (mistir.info/rococo) lung cancer trial that 
used the platform to investigate whether proton therapy can reduce dose to 
normal tissue, with equal or higher tumour dose. The trial participants down-
loaded de-identified clinical datasets to plan according to a strict protocol. The 
treatment planning results were returned to the server after which central analy-
sis was performed. It showed that dose reduction is indeed possible, even when 
escalating the dose to the tumour. 

Chapter 7 evaluates an online proton therapy decision support system 
(PRODECIS: prodecis.nl), reusing head and neck cancer data from another 
ROCOCO trial. The system assesses healthcare reimbursement eligibility for 
model-based tumour groups by comparison of photon and proton treatment 
plans, using publicly available toxicity and cost-prediction models from Pre-
dictCancer (predictcancer.org). The system proved successful in the assessment 
of 92% of the test cases and showed that, with proton therapy, 91% of the pa-
tients clinically benefit from reduced complications after one year, while 35% 
would be considered cost-effective. 
  

http://www.mistir.info/
http://www.mistir.info/rococo
http://www.prodecis.nl/
http://predictcancer.org/
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Samenvatting 

Radiotherapie-oncologie, sterker nog, de gezondheidszorg in z’n algemeen zit in 
de problemen. De uitgaven aan de gezondheidszorg stijgen snel en leiden tot 
een onhoudbare situatie [1]. Een vergrijzende bevolking verklaart de kosten ten 
dele, maar ook overbehandeling speelt een grote rol [2]. Dit kan enerzijds ver-
klaard worden door defensieve geneeskunde [3], maar aan de andere kant ook 
door inefficiëntie ten gevolge van de langlevende klinische protocollen en de 
snelle technology-push vanuit de gezondheidsindustrie.  

Een van de opties om kosten te reduceren, is door kosteneffectiviteitsanaly-
ses of Healthcare Technology Assessments toe te passen om de politiek en be-
sluitvormers te informeren over het juiste gebruik van (nieuwe) technologie. 

Hiertoe is onderzocht hoe gepersonaliseerde beslishulpsystemen kunnen 
worden ontwikkeld, inclusief kosteneffectiviteit op het gebied van proton thera-
pie. De volgende hypothesen zijn behandeld en bevestigd: 

◆ Rapid Learning Healthcare (RLHC) kan klinische onderzoek en klinische 
besluitvorming bevorderen. 

◆ De vooruitgang in Healthcare Information Technology (HIT) maakt het 
mogelijk om data internationaal te delen, terwijl de privacy van de patiënt 
gewaarborgd blijft. 

◆ Het combineren van in silico planningsvergelijkingsstudies met multifac-
toriële predictiemodellen maakt het mogelijk om beperkte, dure middelen 
in te zetten, zoals geïntroduceerd bij protonentherapie. 

Het generieke concept van deze thesis is het gebruik van RLHC om evidence-
based medicine aan te vullen met predictiemodellen om zo te voorzien in klini-
sche beslishulpmiddelen voor een geïndividualiseerde behandeling van kanker 
(Hoofdstuk 2). RLHC past geavanceerde HIT toe om gescheiden klinische in-
formatiebronnen samen te brengen in een datawarehouse dat een compleet, 
geïntegreerd, ziekte-georiënteerd overzicht geeft van medische gegevens voor 
onderzoeksdoeleinden. Dit hoofdstuk geeft een algemeen overzicht van enkele 
technieken die werden gebruikt in de daaropvolgende werken. 

Hoofdstuk 3 demonstreert hoe instituten voordeel kunnen hebben van deze 
verbeterde presentatie van patiëntinformatie om de efficiency en kwaliteit van 
de dataverzameling voor klinische trials te verbeteren. Verder gebruikt RLHC 
machine learning principes om data te doorzoeken naar relevante relaties om zo, 
op data gebaseerde, complicatie voorspellingen te modelleren. 
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Voor het modelleren en valideren van deze modellen zijn grote hoeveelhe-
den data nodig welke niet beschikbaar zijn binnen één enkel instituut. Verder is 
het noodzakelijk dat externe data beschikbaar zijn om de heterogeniteit van de 
data te vergroten wat de voorspellende waarde van de modellen vergroot en om 
externe validatie mogelijk te maken. 

Hoofdstuk 4 presenteert de benodigde technieken om data te delen die de 
medische data silo’s ontsluiten op een manier dat de patiënt privacy gewaar-
borgd wordt. Hiertoe worden ‘connectoren’ geïnstalleerd binnen de beveiligde 
netwerkomgevingen van het ziekenhuis. Door de data te transformeren in in-
ternationaal gestandaardiseerde, semantisch interoperabele datamodellen zijn 
computers in staat om data om te zetten in kennis. Verder worden medische 
gegevens vanuit de lokale taal vertaald in unieke, internationale codes wat bete-
kent dat de data kunnen worden hergebruikt in het buitenland met gelijke bete-
kenis en waarde. Dit maakt het mogelijk om op gefedereerde of gedistribueerde 
wijze complicatie predictiemodellen te leren [4]. 

Vooruitlopend op een gefedereerd netwerk, hetgeen erg geavanceerd en nog 
niet gemeengoed is, gebruikt het MISTIR (mistir.info) platform een gecentrali-
seerde onderzoek database om internationaal samen te werken aan in silico kli-
nische trials (Hoofdstuk 5). Het systeem biedt een beveiligd data-uitwisselings-
platform met hoogwaardige datasets en studieprotocollen voor meerdere in 
silico planningsvergelijkingsstudies van verschillende behandelmodaliteiten. 
Voor een uniforme analyse van de resultaten worden kwaliteitsgarantiemaatre-
gelen en automatische dataextracties toegepast. 

Hoofdstuk 6 beschrijft een ROCOCO (mistir.info/rococo) longkanker studie 
die het platform gebruikt om te onderzoeken of protonentherapie de dosis op het 
normale weefsel kan verminderen bij gelijke of hogere dosis op de tumor. De 
deelnemende centra downloadden geïdentificeerde klinische datasets om volgens 
een strikt protocol de behandelplannen te maken en vervolgens terug te sturen 
naar de centrale server waarna een centrale analyse werd gedaan. Dit onderzoek 
toonde aan dat stralingsreductie inderdaad mogelijk is, zelfs bij dosisescalatie. 

In Hoofdstuk 7 wordt een online protonentherapie beslishulpsysteem geëva-
lueerd (PRODECIS, prodecis.nl), waarbij gegevens van een hoofd-hals ROCO-
CO studie werden hergebruikt. Het systeem beoordeelt of modelgebaseerde 
tumorgroepen in aanmerking komen voor een vergoeding van de ziektekosten-
verzekeraar door fotonen- en protonenplannen te vergelijken en gebruik te ma-
ken van openbaar aangeboden voorspellingsmodellen voor toxiciteit en kosten 
via PredictCancer (predictcancer.org). Het systeem bleek 92% van de testcasus-
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sen goed te kunnen beoordelen en toonde aan dat 91% van de patiënten klinisch 
baat hebben bij protonentherapie door verminderde complicaties na een jaar, 
terwijl 35% als kosteneffectief zou worden beschouwd.  
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